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Preface.
heology is a relatively new term introduced into physics

JL V about twenty years ago and its application to physiology 
has been rather scarce, so that a few words of definition might 
be useful. It denotes that branch of physics which deals with 
the deformation and flow of matter. While the physics of the last 
century and the beginning of the present mainly dealt with simple 
rheological systems, such as the Hookean body and the New
tonian fluid, in modern rheology “the ideal elastic body and the 
perfect fluid are almost as systematically disregarded as they are 
overemphasized in classical mechanics of continua” (Reiner 
1949 a, b). Biological structures hardly display any example of 
the simple type of rheological behaviour and the recent progress 
in the description and understanding of the complex elastic and 
flow properties of rubber-like substances and of plastics, i. e. 
substances with high particle size or molecular weight provides 
a basis for an application of these conceptions to biological 
systems as well.

The mechanical properties of skeletal muscle for many years 
have been a problem of special interest to physiologists and ever 
since Weber and Blix in the middle and at the end of the last cen
tury they have been considered a central problem in the under
standing of the minute structural changes underlying the mechanism 
of contraction. In more recent times important contributions from 
studies on whole muscle have come chiefly from Hill and his 
collaborators. The present paper deals with properties of the 
isolated fibre at rest and during shortening (isotonic). It repre
sents a continuation of a study previously published in this series 
(1942) which mainly treated the mechanical behaviour of the 
isolated muscle libre recorded at constant length (isometric). We 
have attempted to apply some of the concepts developed in 
modern rheology for a description of the experimental results 
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and the minute structural interpretation. In the last section a 
molecular model is analyzed and on its basis a theory of con
traction is suggested as far as possible in quantitative terms. In 
view of the extent of the present report the authors feel it neces
sary to emphasize that it does not pretend to represent a review 
or a monograph with a complete survey of the literature on the 
mechanical behaviour and structure of muscle. The reader 
interested in the older literature is referred to A. Fick’s book 
(1882) and to more recent reviews as for example Hill (1931), 
Lindhard 1931, Buchthal and Lindhard 1939, Fenn 1945, 
Barer 1948, the Biological Symposium on Muscle (1940), the 
New York Academy of Science symposium on Muscular Con
traction (1947), and the articles in the Annual Reviews of Phy
siology of 1939 to 1951.

The authors feel that an apology is necessary for the large 
volume of the present paper. Il is a consequence of the fact that 
some of the experimental material was acquired during the years 
of the last war wherein conditions arose which were unsuit
able, indeed, at times impossible for the adequate treatment or 
the publication of the data. With the return of the status quo 
ante other aspects of the problem had meanwhile been followed 
up which stressed the need for further elaboration both theo
retically and experimentally.

In the mathematical treatment of the results, especially those 
dealing with the theory (Part IV) and the description of the 
transient experiments (Part II), the authors wish to acknow
ledge the most valuable collaboration of Mr. Poul Rosenfalck, 
M. Sc.

In the first development of the theory Mr. Bent Fuglede, 
M. Sc. has rendered valuable assistance. Mr. Alexander 
Mauro, Ph. 1)., kindly read the manuscript and gave us valuable 
suggestions for which the authors are very grateful. Finally we 
wish to express our thanks to Mr. Vagn Andersen for his tech
nical assistance in constructing the myograph used in the isotonic 
recording of the single fibre contractions which represented a very 
delicate mechanical problem.

The work has been supported by grants from the Carlsberg 
Foundation, the Miciiaelsen Foundation, and the Rockefeller 
Foundation.
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Introduction.

In dealing with the cross striated muscle fibre, knowledge of the 
minute structure and its relationship to physiological properties 

are the basis for understanding the process of contraction.The direct 
methods for the investigation of line structure, electron micro
scopy and X-ray diffraction, have so far given important in
formation. For example, electron microscopy has shown that 
the submicroscopic filaments apparently continue uninterrupted 
through the isotropic and anisotropic substance and retain their 
straight course both in the resting and contracted fibril (Hall 
et al. 1946). However, the contractile process does not proceed 
in dimensions which lie within the resolving power of the electron 
microscope and therefore the site of the deformations must be 
sought within molecular dimensions.

Decisive information was expected from X-ray diffraction 
analysis; but although these investigations have yielded im
portant knowledge about the structure, especially with regard to 
the similarity between myosin and muscle substance and be
tween myosin and other fibrillar proteins (keratin and fibrinogen, 
Astbury 1938, 1947), it has not been possible to determine the site 
of the mechanical deformation. X-ray diagrams of normal 
living, contracted, and resting muscle fibres show no significant 
difference in the molecular patterns, and diagrams from stretched 
and unstretched muscle diller only as regards the degree of 
orientation. It is furthermore significant that even considerable 
degrees of shortening, such as are obtained in irreversible con
tractions, are not accompanied by conspicuous disorientation.

While mechanical properties such as rubber-like elasticity 
and contractility can be demonstrated both on macroscopic and 
microscopic levels, unfortunately the direct methods mentioned 
above for a submicroscopic analysis with respect to the site of 
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the deformations only tell us where they in any case do not 
occur. The negative results of X-ray diffraction, which are 
especially disappointing in this respect, are interpreted as being 
caused by a relatively strongly refractive, well orientated crystal
line substance, which gives a comparatively regular diffraction 
pattern and which on account of its considerable rigidity takes 
part only to a small extent in the mechanical deformations 
(Astbury 1947). The mechanical deformations are assumed to 
be localized in structural elements which are in series with this 
inert material. The contractility must, therefore, be assumed to 
lie in structural elements of molecular dimensions, which have 
so far escaped direct analysis.

Among the various indirect methods for the investigation of 
fine structure, the mechanical methods have special advantages, 
since detailed information on the functional state and the con
comitant properties of the minute structure can be obtained 
during the normal function of the muscle.

In previous investigations, carried out under isometric con
ditions, the tension was found to be the dominant factor in de
termining the elastic properties of muscle fibres. Hill’s inves
tigations have further shown the influence of load on the velocity 
of shortening in whole muscles. Under isotonic conditions, the 
error which occurs when one part of the muscle stretches another, 
is practically eliminated, and similarly the distortion of the time 
course of the mechanical events caused by liberation of stored 
elastic energy is reduced. It is thus obvious that it is advan
tageous to keep the load at a chosen constant level, i. e. to work 
under isotonic conditions (Fenn 1936). Correction is thereby 
avoided for the influence of the variable tension on the mechanical 
constants. The difficulties in setting up this method of recording, 
which are considerably greater than in isometric recording, 
have so far prevented satisfactory investigations on the dy
namic properties of the single fibre under isotonic conditions. 
The necessity of working on isolated fibres or small bundles of 
muscle fibres is illustrated by comparative investigations on large 
bundles or whole muscles, where the shunting connective tissue 
often conceals the structural changes which characterize the 
process of contraction. Using isolated fibres gives furthermore 
the advantage that transmission of temperature changes and dif- 
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fusion occur with essentially higher velocity than in whole 
muscles.

The present paper is divided into four sections: Part I com
prises a description of the experimental technique for the deter
mination of static and dynamic properties in the single muscle 
libres.—Part II gives an analysis of the length-tension diagram 
of the muscle fibre with respect to elastic and viscous forces and 
plastic deformation and with respect to the components arising 
from the different structural elements of the fibre as for example 
the sarcolemma. The elastic properties are investigated by 
studying the effect of sudden changes in length or tension (tran
sient experiments), and by introducing periodic changes in load 
on the fibre (vibration experiments). An attempt will be made 
to localize the different mechanical properties of the muscle 
fibre to its minute structural elements and to the textural pattern 
in which these elements are organized. Part III contains an 
analysis of the dynamic mechanical properties during con
traction using as an indicator the velocity of shortening and its 
changes under different external and internal conditions. In the 
last section of the paper, Part IV, an attempt is made to interpret 
the experimental findings by a simple quantitative picture of 
the minute structure.

Part I.
Method.

The isotonic myograph
fhe recording of the shortening, the shortening velocity, and 

the elastic properties in the single fibre required a recording 
system in which the forces of inertia are small as compared with 
the forces which the fibre itself can produce. We have tried to 
obtain this by an arrangement (fig. 2) in which the forces of 
the fibre were transferred by means of a lever (a) to a moving 
coil (c) suspended by a knife-edge (d), as used in an analytical 
balance. The excursions of lever (a) are limited by the adjust
able stop screw (n) for the recording of afterload contractions. 
The coil was placed in a magnetic field and consisted of 15 turns of 
wire with a diameter of 0.12 mm and had a resistance of 4.7 ohms. 
At a distance of 25 mm from the axis of rotation on the lever



12 Nr. 7

O

5

lOmm

Fig. 2. Isotonic myograph.
a = lever in rigid connection with moving coil (c).
b — point of pull of fibre on (a).
d = knife-edge suspension for (a) and (c).
e and / = mercury cups leading current to (c).
g and h — pairs of micro-tweezers to hold the tendon ends of the fibre.
i = ringer bath.
k — chamber for cooling or heating.
I — micrometer screw for adjustment of fibre length.

m = muscle fibre, on the lower graph as a loop around (a), on the upper graph 
one tendon end attached to (a).

n = stop-screw for the adjustment of afterload.
o = mirror for recording of coil movements.

5-N — permanent magnet producing the magnetic field around (c).



Nr. 7 13

(a) a force of 5 dynes per mA was produced by passing current 
through the coil. Thus, any desired load could be imposed upon 
the fibre by setting the current at a given level. In order to pass 
both direct current and alternating current independently through 
the coil, it was necessary that the direct current circuit and the 
alternating current circuit have as large a resistance as possible as

/2 /iii

Fig. 3. Electrical and optical circuits for the determination of elastic and viscous 
stiffness. Constant load on the muscle fibre introduced as d.c. current in coil (5), 
varied by potentiometer (1), transmitted through resistor (2) and measured by 
milliamperemeter (3) led through variable resistor (4) to the terminals of coil (5). 
Alternating load derived from alternating current (a. c.) of variable frequency 
transmitted through resistors (6) and (9) to the coil and to the X-plates of the cathode 

ray oscilloscope (7) and measured by valve-voltmeter (8).
The movements of the coil are recorded photo-electrically. Mirror (1) is attached 
to the coil (5), reflects the image of linear light source (11) upon triangular concave 
mirror (13). Variations in angle of (10) change the amount of light falling on (13). 
Mirror (13) focusses a picture of (10) on ground glass (14) diffusing light on photo
cathode (15). The photo-current is amplified in (16) and (18), measured by valve

voltmeter (17) and connected to the Y-plates of (7).

compared with that of the coil. In this way a certain change in 
resistance in one of the circuits gave only a slight variation in 
impedance between the terminals of the coil. It has, therefore, 
been necessary to work with relatively high voltages in order to 
be able to use a resistance of 300—550 Ohms. The variation in 
impedance did not exceed 1 per cent at the frequencies of alter
nating current used. The alternating current circuit (fig. 3) con
sisted of a variable resistance of 150 ohms, 600 watts, which
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was inserted over 220 volts main voltage and was used as a 
potentiometer (1). The current from the arm of the potentiometer 
flowed via a constant resistance of 300 ohms, 100 watts (2) to 
the galvanometer (3) and then further through a variable re
sistance of 200 ohms, 50 watts (4) to the coil (5).

In order to reduce frictional 
resistance against the move
ments of the coil, which might 
occur at its terminals, these were 
provided with platinum wire, 
which dipped into two small mer
cury containers (e, f fig. 2) pla
ced in the rotational axis of the 
coil. The deflection of thecoil was 
determined optically and record
ed photographically (fig. 4) by 
means of the light lever con
sisting of mirror (10), which was 
mounted on the coil, and the 
light source (11) with a con
denser (12). Since the recording 
system moved on a horizontal 

axis and hence the light spot moved vertically, it was necessary 
to let the light rays be reflected by the mirror (19) in order to be 
able to use the available recording cameras, in which the film 
runs in a vertical direction and where a horizontal movement of 
the light spot is required (fig. 4).

Fig. 4. Photographic recording of coil 
movements.

(10) mirror on moving coil (5). (11) linear 
light source focussed through (12) on 
photographic paper. By means of fixed 
mirror (19) a vertical deflection of the 
light spot is converted to a horizontal.

(20) cylindrical lense.

Dynamic elastic properties as they are revealed in 
vibration experiments.

Fundamental definitions.
The dynamic elastic properties of the muscle fibre were 

investigated by superimposing small periodic variations in load 
on the fibre. In previous experiments we have studied the me
chanical reaction of the fibre to periodic changes in length (Bucii- 
TiiAL 1942, Buchthal et al. 1944 a). In the present experiments 
the length alterations produced by the periodic changes in load 
amounted to 0.05 to 2.0 per cent of the equilibrium length (de
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flection measured from the mean position). When the periodic 
changes in load and length as they occurred during a vibration 
were transformed to electrical quantities and led to the X and Y 
plates of a cathode ray oscilloscope a Lissajous figure was ob-

Fig. 5. Lissajous figures representing alternating amplitude (ordinates) versus 
force (abscissae) at different vibrational frequencies, given by the figures on the 

curves in c.p.s.
Constant force amplitude, approximately 80 dynes peak to peak. 0° C.

tained as shown in the examples of fig. 5. The fact that this 
figure was not an oblique line but resembled an ellipse indicated 
that the changes in length did not follow the changes in external 
load, i. e. there is a phase difference which corresponds to the 
presence of a damping in the system. Hence, the Lissajous 
figure illustrates the mutual relation between the enforced changes 
in load and the resulting changes in length. At resonance fre
quency special conditions occur which are dealt with below.

In a series of experiments Lissajous figures were recorded 
with an approximately constant amplitude of the periodic changes 
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in load at different frequencies of vibrations (fig. 5). The figures 
at frequencies < 50 c.p.s. in this case are asymmetrical and, if 
at all, markedly distorted ellipses. The distortion is an expression 
of the non-linear hysteresis which characterizes the length-tension 
diagram of the muscle fibre. However, with frequencies around 
resonance (in fig. 5. 75 c.p.s.) the Lissajous figures with good

Fig. 6. Mechanical impedance of oscillating system + muscle fibre as a function of 
frequency of vibration. 0°C. Resonance defined by peak impedance = 95 c.p.s., 
resonance defined by 90° displacement between force and length amplitude = 

100 c.p.s.
ordinate: compliance in cmX 10—5 per dyne 
abscissa: vibrational frequency in c.p.s.

approximation are ellipses. Hence the simplest assumption is to 
consider the total oscillating system consisting of muscle fibre 
plus measuring device as a system which comprises an inertia 
coupled to a Voigt-element, i.e. a linear damping in parallel with 
a linear elastic element, moving under the influence of an external 
alternating force. A further illustration of the applicability of this 
very simple assumption is given in the experiment represented by 
fig. 6, which is of the same type as that represented by the ellipses 
of fig. 5. It shows the ratio between length amplitude and force am
plitude as a function of vibrating frequency. The variation of this 
ratio with frequency is comparable to that which can be expected for 
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the equivalent system mentioned above. However, the displacement 
in phase did not correspond to that present in the simple equiva
lent system (cf. p. 107).

In view of the similarities mentioned, it was appropriate to 
characterize the dynamic mechanical properties of the muscle 
fibre around resonance by means of the elastic constants of the 
simple equivalent system which is composed of a Voigt-element 
plus an inertia, i. e. the elastic stiffness Gclast and the damping 
(?/, viscosity) or a quantity derived from rj as for example the 
viscous stiffness Gvisc.

The equivalent system moves under the influence of the periodic 
force

cr(/) = a0 cos co t (1)

according to the equation of motion:

mÿ + 7¡y + Gy = o0 cos co/, (2)

where y(/) denotes the deformation, y the velocity, ÿ the ac
celeration of the movement, m the inertia in the system, Gelast 
the elastic stillness, and rj the damping (viscosity). The stationary 
solution of (2) is of the type:

7(0 = 7o cos (co/ — ip), (3)

where the integration constant y0 denotes the maximal amplitude 
of movement, and the other integration constant ip the phase 
displacement between the external alternating force and the 
periodic movement produced by this force. By insertion of (3) 
and the corresponding velocity and acceleration in (2) two 
relations are obtained between the integration constants y0 and 
ip and the constants m, Gelast, T], cr0, and the cyclic frequency co, 
which characterize the oscillating system and the alternating 
force :

(belast — m C)2) y0 = <r0 cos ip (4)

r¡a>y0 = cr0 sin ip (5)

From (4) and (5) we get the following expressions for the 
maximal amplitude (y0) and the phase displacement (ip):

Dan. Biol. Medd. 21, no. 7. 2
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/(belast — m W'2)2 + C7?")2

v> = tan-l(——r/C° J (p<y><n) (7)
belast-"1" 7

At resonance, defined as the frequency o)0 at which the ex
ternal force and the corresponding deformation show a mutual

% . . .
displacement in phase of- , the expression for elastic and viscous

stillness arc according to (4) and (5)

and
(8)

(9)

The quantity t]m0 has the dimension of a stillness and in the 
following is denoted as Gvisc, viscous stillness.

(10)

At resonance frequency, the elastic and viscous stillness which 
characterize the mechanical properties of the muscle fibre in 
vibration experiments, can be determined from (8) and (9). By 
adjusting the frequency of the oscillating system to resonance we 
obtain Gc]ast (8) and by measuring the corresponding maximal 
amplitude of movement we obtain Gvisc (9).

As mentioned above, at resonance the Lissajous figures ob
tained with good approximation were ellipses. However, a 
systematic study of these figures gave a small but significant 
deviation from the shape of a pure ellipse also for these fre
quencies. It is seen from fig. 5 that one half of the ellipse is 
more flat than the other. This deviation must be considered an 
expression of non-linear properties and indicates that the 
linearly damped equivalent system can be applied only with 
approximation. This is also obvious from the observation that 
the dynamic stiffness varies with the amplitude of the alternating 
force, a phenomenon which will not occur in an equivalent 
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system of the type applied and which will be dealt with in detail 
in a later section.

In vibration experiments in which the amplitude of the 
alternating force produced deformations in the muscle fibre 
which exceeded 2 per cent of the equilibrium length, the Lissajous 
figures were always so distorted that they were unsuited for a 
determination of dynamic stillness.

From the elastic and viscous stillness two other quantities can 
be defined which also characterize the visco-elastic properties of 
the muscle fibre:

1) The total stiffness of the fibre, Gtot:

(ID

a quantity which also was determined in the former vibration 
experiments performed at a constant mean length of the fibre, and

2) The ratio of viscous and elastic stiffness denoted as sr:

elast

(12)

sr denotes the tangent to the phase displacement between the 
alternating force acting within the fibre and the length amplitude 
produced by it.

Arrangement for the determination of the vibrational stiffness.
The external periodic loads were obtained by passing an 

alternating current via resistance (9) (1500 ohms) through the 
coil (fig. 3, 5). A low frequency a. c. generator was used as a 
source for the alternating current (0—330 cycles per sec., output 
impedance 2400 ohms, power output 3 watts). Since a direct 
photographic recording of the movements of the coil was not 
suited for stillness measurements, the vibration amplitude of 
the fibre produced by the alternating current was transformed 
to electrical values.1 For this purpose a single filament lamp (11)

1 In recent experiments the photoelectric transmission has been replaced by 
a transmission which uses variations in electrical capacity, with the coil (c fig. 2) 
as movable condenser plate (Buchthal 1942). 

2*
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was focussed by the lens (12) upon the mirror (10), which re
flected the picture upon a triangular concave mirror (13). The 
image of the filament of the lamp formed a line of light, which 
stood parallel to the shortest side of the triangular section of the 
concave mirror. This line moved across the triangle, the amount 
of light reflected from the mirror being largest, when the light 
hit the neighbourhood of the base line of the triangle. The con
cave mirror reflected an image of the mirror on the photocell 
(15) and the light spot then illuminated the same area of the 
cathode of the vacuum photocell (15) independent of the de
flection of the mirror (10). A ground glass disc (14) was placed 
immediately in front of the photocell. This diffused the light and 
compensated for inaccuracies which might have arisen from 
small movements of a sharp and brilliant image on the cathode 
of the photocell, on account of differences in sensitivity in the 
light sensitive layer. The alternating component of the photo
electric current was amplified approximately 100 times (16) and 
was led to a sensitive valve voltmeter (17) for measurement 
and over an amplifier to the Y-plates of the cathode ray 
oscilloscope (18). The deflection of the electron beam pro
duced by the signal on the Y-plates, thus corresponded to the 
instantaneous value of the amplitude of vibration (y). The signal for 
the X-axis was derived from the alternating current generator 
either directly or over the resistance (6) (5000—2000 ohms) 
dependent upon the force amplitude necessary to obtain a suit
ably broad Lissajous figure. This current was a measure of the 
instantaneous value of the alternating force (u), the mean value 
of which was read on the valve voltmeter (8). At the resonance 
frequency for the oscillating system plus muscle fibre the amplitude 
is at its maximum when the alternating force passes its zero value 
and vice versa, i. e. when the phase displacement between the 

force and amplitude is —. This is the case when the axes of the 

ellipse coincide with the X- and Y-axes of the oscilloscope screen. 
The clastic stillness (Ge]ast) can thus be determined from the 
resonance frequency :

belast = = 4 7r2'7n’’’o> (13)

where v0 denotes the resonance frequency in c.p.s. = co0/2 it
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and ni the equivalent mass of the recording system (see equa
tion (2) p. 17).

Fig. 7 shows the position of the ellipse at 3 different fre
quencies near resonance. The resonance frequency for the fibre 
investigated was about 74 c.p.s. The frequency range investi
gated lay between 20 and 200 c.p.s. corresponding to elastic

Fig. 7. Lissajous figures giving the correlation between alternating force and alter
nating length during the oscillation period (alternating length amplitude 
2 per cent of Lo peak to peak). The ellipse marked 75 is close to resonance (74 c.p.s.); 
displacement of the longitudinal axis to the right corresponds to a frequency of 
6 c.p.s. above and displacement to the left to a frequency of 4 c.p.s. belou) resonance 

frequency.

stiffnesses of between 700 and 70000 dynes xcm~l. The width 
of the ellipse was a measure of the alternating force introduced, 
the exact value of which was read on the valve voltmeter (8). 
Its height was a measure of the amplitude of movement, which 
was read on the valve voltmeter (17). By this the resistance 
component, “the viscous stiffness”, was determined at resonance 
frequency (?pco0). The narrower the ellipse in proportion to its 
height, the less force was required for the maintenance of the 
oscillations, and the less the damping, i. c. the viscous stiffness.

Mounting of the muscle fibre.
The muscle fibre or small bundles of 2-10 fibres were fastened 

by the ends of the tendons to two small pieces of aluminium 
tubes or to two pairs of silver forceps (g, h, fig. 2) and kept in 



22 Nr. 7

a chamber (i) with double walls between which solutions of 
different temperatures were passed. Thereby the Ringer’s solution 
and the muscle in the silver chamber could quickly be brought 
to any temperature between — 3° and 30° C. The silver chamber 
and the forceps were mounted on a plate, which could easily be 
removed and placed under a binocular microscope for mounting 
the fibre.

When using the aluminium tubes the fibre was connected to 
the lever (a, fig. 2) by slipping the thin walled tube which was 
squeezed on the tendon over the lever. In some experiments 
the tendon ends were placed each in its pair of forceps (fig. 2 
lower graph) and the fibre hung in a loose loop in the Ringer’s 
solution. The loop was placed around the lever (a), which could 
stretch the fibre (m) with the load desired. Roth pairs of forceps 
could be moved together backwards and forwards by means of 
a micrometer screw (1) and adjusted at different distances from 
each other. By transferring the load directly by the lever arm 
(a) to the fibre, it was possible to avoid the extra mass, introduced 
by the, weight of a suspension arrangement, which could be 
removed. This type of suspension furthermore had the advantage 
that the force in the fibre was doubled and the length halved, 
hence the forces of inertia for a given relative change in length 
were halved. Comparison of the latter type of suspension with 
the former, where the fibre was straight, showed that the me
chanical and physiological properties of the fibre were not 
significantly different.

Determination of the constants of the recording system.
(1) The force in dynes which acted on the lever (a) by the 

How of a given current through the coil (c, fig. 2) could be de
termined statically by means of a torsion balance or dynamically 
by a determination of the equivalent mass of the system m,

m = ft, (14)

where I is the moment of inertia and / the length of the lever; 
both procedures have been used and gave, in good agreement, 
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values of 5.0 dynes per mA. The static determination was the more 
accurate. In this case the error was due to small variations in 
the length of the lever arm and was about 2 per cent, corresponding 
to a displacement of the point of action of the force of 0.5 mm. 
In a range of length variations of 1 cm the variations of the force
strength constant did not exceed 5 per cent.

(2) The equivalent mass (m) was also determined in two 
ways. When a known alternating force, <70cosco/ with a known 
angular frequency (co) was introduced into the oscillating sy
stem, in was found from the maximal amplitude measured (y0):

m y0-co2 (15)

The equivalent mass was further determined by loading the 
oscillating system with a known additional mass m . When <r0 
and co were kept constant and the amplitude of oscillation was 
measured with (y0) and without (y0) additional mass, we obtain:

From this we lind

i ' uo m + in = > 9 .
7o ‘

(16)

and co2» m-yo-y'o
7o~/o (17)

With both procedures the equivalent mass was found to be 
0.045 g. This figure refers to the oscillating system in air. In liquids 
the acceleration of the liquid masses which surround the lever 
(a), introduced an extra mass, which was equal to about 0.010 g. 
The increase in equivalent mass produced by the fibre or libre 
bundle did not exceed 5 per cent of the total equivalent mass. 
In the later experiments an improved oscillating system was used 
in which the equivalent mass could be reduced to 0.023 g.

(3) Damping of the system. In model experiments, in which the 
muscle libre was replaced by a very thin spiral spring, at 
resonance a vertical line was obtained on the screen of the 
oscilloscope instead of an ellipse, which appears with the muscle. 
This indicated that the damping of the system itself in air was 
without significance for the measuring results. Using a metal 



24 Nr. 7

spiral spring which together with the recording system had 
resonance at a frequency of 100 c.p.s., the damping resistance 
in air was 0.1 dynes cm-1 sec., i. e. the viscous stiffness was 
1 /BOO of the elastic stiffness. When the lever of the oscillating system 
was immersed in Ringer’s solution, a damping arose, which, how
ever, was less than 10 per cent of that found for the muscle fibre.

The inertia of the system is of decisive importance in evaluating 
the velocity and amplitude of variations in length. This is il
lustrated by a typical example of an isotonic contraction at low 
load and high temperature (25° C.). Low load and high tem
perature were chosen in order to obtain large forces of inertia 
in proportion to the forces developed by the libre. This was 
obtained, not only because the fibre tension was small, but also 
because the velocity of shortening and hence the acceleration 
was large. In the example examined the equilibrium length of 
the fibre was 0.5 cm (in the recording system 0.25 cm) and the 
load 150 dynes, corresponding to 0.20 Po. With this load and at 
25° C., the maximum shortening was reached within 60 msec. 
The shortening amounted to 0.1 cm (in the system 0.05 cm), 
corresponding to 20 per cent of the equilibrium length. In the 
first 5 msec., the fibre had reached its “maximal shortening 
velocity”, which amounted to 5.5 cm per sec. (corresponding to 
2.75 cm per sec. in the system). The relative shortening velocity 
was about 11 Lo per sec. (Lo = equilibrium length). In the pre
sent recording system, which had an equivalent mass of 0.055 g. 
(reduced to the point of action of the fibre), the acceleration from 
velocity 0 to a velocity in the recording system of 2.75 cm per 
sec. within the interval 5 msec, required a force of inertia of 
about 30 dynes in addition to the constant force of 150 dynes.

In the next 40 msec, the velocity decreased continuously 
from 2.75 cm per sec. to 0. This gives a force of inertia of 4 
dynes. At the load used, the stiffness of the fibre was twice the 
resting stillness, i. e. 8000 dynes X cnT 1 and the force of inertia 
will, therefore, give a shortening of 5 /i in addition to the purely 
isotonic one. This corresponded to an increased shortening 
caused by the forces of inertia, of the fibre of 2.5 per cent of 
the shortening in a system without mass. This artifact decreased 
with increasing load, since the stiffness increases and the accelera
tion is reduced, because of decreasing velocity of change in length.
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The ratio between the force developed by the fibre (7-* 0) and 
the force of acceleration caused by the mass of the recording 
system, Ps, gives a possibility to compare the recording system 
used here with a good system used for whole muscles. In the 
present example, with a libre length of 0.5 cm, a Po of 750 dynes, 
a maximal shortening velocity of 5.5 cm per sec. (corresponding 
to a velocity in the recording system of 2.75 cm/sec.), and an 
acceleration in the system of 60 cm X sec.-2, the relative shortening 
velocity was 11 Lo per sec., and the relative acceleration 274 Lo X 
sec.-2. The force of acceleration was 4 dynes. This gives a Ps 
which is 0.5 per cent of Po.

When a pair of sartorius muscles with an equilibrium length 
of 3 cm, a Po of 105 dynes, and a corresponding relative ac
celeration is considered, which in the isolated fibre was 274 
7,0 X cm- 2, the true acceleration is 822 cm X sec.-2. With an 
equivalent mass of 3 g the force of acceleration becomes 2466 
dynes and Ps = 2.5 per cent of Po. Recently Abbott and Ritchie 
(1951, b) have used a recording system for whole muscle with 
an equivalent mass of 75 mg. With a Po — 40 g this gives a 
Ps = 0.16 per cent of 7%.

Sensitivity of the recording system to variations in 
length and load.

In the direct photographic recording a light lever was used 
which gave a magnification of 10 times. Assuming 0.1 mm on 
the recorded curve to be the limit of accurate reading, this cor
responded to a change in length of the fibre of 0.01 mm. The 
stillness of the recording system was measured to 8—10 dynes X 
cm ', i. e. a load of 0.01 dyne could still be detected on the 
muscle fibre.

In the experiments the length was recorded photographically 
as a function of time. The velocity of the change in length cor
responded to the gradient of the recorded curve employing the 
magnification 1:10 between the change of length of the fibre and 
the light spot on the film (recording velocity 25—100 mm per 
sec.). Ry this method we have measured the velocity of shortening 
and relaxation during and after contraction and the velocities of 
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the changes in length produced by sudden variations in load at 
rest and during contraction.

By using a photoelectric transmission, the sensitivity was in
creased considerably. A change in length of only 0.5 /i could 
be detected; this corresponded to measurements of changes in 
the fibre length of 0.01 per cent of Lo. By using the photoelectric 
transmission the linear recording range corresponded to a move
ment of 1 mm of the lever, measured at the point of action of 
the fibre. The linearity was controlled by reading the deflection 
in millivolts caused by the alternating amplitude, when the 
oscillating light spot covered different areas of the concave 
mirror (13, fig. 3) corresponding to different mean positions of 
the lever (a, fig. 2).

The sensitivity to periodic variations in load depended upon 
their frequency and on the frequency characteristic of the oscil
lating system plus the fibre, varying with the elastic and viscous 
stillness of the fibre (fig. 6). The maximal frequency at which 
measurements still could be taken amounted to 300 oscillations 
per second.

Before and after each experiment the absolute sensitivity for 
changes in length was determined by introducing a known length 
amplitude and measuring the amplified alternating current com
ponent of the photoelectric current by the valve voltmeter (17). 
The accuracy of this calibration depended on the accuracy with 
which the deflection of the light spot could be determined and 
its error did not exceed 5 per cent. A maximal amplitude of 
deflection (peak to peak) of 0.5 cm, which after amplification 
gives 100—150 mV, usually was used for calibration (denoted 
mV5). At a magnification of 1:10, the amplitude of deflection of 
0.5 cm corresponded to a movement of the fibre of 0.05 cm, i. e. 
the maximal deflection from the equilibrium position was 
0.025 cm.

By means of the valve voltmeter (17, fig. 3) the length am
plitude y0 was determined in cm:

fo =
0.025
mV5 X mV .X 9

(18)

where mVx denotes the length amplitude in millivolt produced 
by the alternating force applied.
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Tlie maximal value of the alternating force cr0 is expressed 
in dynes:

<r0 = mAeff-1/2 • 5, (19)

where 5 gives the conversion factor from mA to dynes, and |/9 
the ratio between the maximal and the effective value of the current. 
The alternating voltage was measured by means of the valve 
voltmeter (8). By introducing a resistance of 1500 ohms (9, fig. 3) 
the current in mA was obtained by multiplying the voltage read 

on the valve voltmeter with —— = 0.667; o-o then becomes: 
1500

cr0 = Voltefï- 0.667 • j/2 • 5 

= VoltefT- 4.7.
(20)

The ratio between viscous and elastic stiffness (sr) is obtained 
by substituting the values measured for cr0, y0, and r0 and the 
equivalent mass m in equations (8), (10) and (12) p. 18:

sr mVs-85.5
(21)

where v0 denotes the frequency of the periodic variations in 
load, measured at resonance in c.p.s.

Sources of error in mounting the fibre in the 
measuring device.

The fastening of the fibre in the forceps (g, h, fig. 2) intro
duced a slight increase in stiffness in the immediate vicinity of 
the point of attachment, since the possibilities for deformation 
here were limited. This error must be considered to be propor
tional to the stiffness itself; it was only of significance in the 
estimation of absolute values of stiffness and moduli of elasticity. 
This error was reduced by the choice of thin and long prepara
tions.

When the fibre was placed in the V-shape, an error in the 
determination of stiffness was introduced by stretching the fibre 
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with the lever (a, tig. 2). The deformations of the fibre were 
limited in the region where it touched the glass rod. Further 
inspection of this region showed, however, that the fibre was 
pressed tightly against the glass rod, so tightly that even with 
much larger movements than those which were used in the 
present experiments, it was impossible to detect any slip in the 
area of contact. In order to ensure that as small parts of the 
fibre as possible were blocked, it was desirable to use a glass rod 
as thin as possible without, however, damaging the fibre or 
blocking the propagation of the contraction. Comparisons with 
experiments in which the fibre was placed in a straight line by 
fastening it directly to the lever, showed that the V-shaped 
mounting did not measurably influence the viability or con
tractility of the fibre (see p. 22).

With regard to the free mobility of the lever it was important, 
especially for short fibres, that the distance between the forceps 
was less than 2 mm. The two halves of the fibre did not lie 
completely parallel, which implied that the resulting force was 
less than the arithmetic sum of the forces in the two halves. 
This could cause a difference of a few per cent between the 
measured and the actual stiffness. Since in these experiments 
fibres or fibre bundles were used which were as long as possible 
(large Hungarian frogs), this deviation lay below the accuracy 
of measurement.

The determination of the absolute value of the elastic stiffness 
was affected, as previously mentioned (p. 23), by changes in 
the equivalent mass of the system, which arose on account of 
the acceleration of liquid masses round the lever and of the 
mass of the fibre itself, when it was placed in the Ringer solution. 
Hence a slight decrease in resonance frequency should have (
been expected as compared with the frequency which was found 
when the fibre was examined in a moist chamber in air. How
ever, an increased resonance frequency was found when the 
fibre was transferred from air to Ringer’s solution, but only as >
long as the fibre was subjected to a small load. The difference 
amounted to up to 20 per cent in resonance frequency. The reduced 
stillness which was found for the fibre in air, presumably was 
caused by the surface tension of the Ringer solution which *
adhered to the fibre and took over part of the force which the 
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lever transferred to the fibre. Since stillness is a function of 
tension, the stillness arising from the internal tension of the 
fibre will be reduced. The length-tension diagram, obtained by 
placing a libre bundle of 1 mm diameter alternatively in air and 
in Ringer’s solution, showed that the surface tension at a low degree 
of stretch gave an additional force of about 30 dynes when the 
bundle was in air. This error was of no significance when the 
fibre was investigated in Ringer’s solution. The Ringer’s solution in 
the chamber was filled up to the same height in relation to the 
position of the fibre and the lever, hence the small error, which 
was due to the damping caused by the solution, was kept con
stant. By comparing the viscous resistance of the muscle fibre, 
with and without Ringer’s solution, it was found that the damping 
introduced by the Ringer’s solution was less than 10 per cent of 
the viscous stillness measured.

The accuracy of measurement in the determination 
of elastic and viscous stiffness.

The errors, which arose from uncertainty in the determination 
of the constants of the oscillating system or in the absolute cali
bration, were constant errors for a series of measurements. 
The measurements in the experiments were encumbered with 
the following uncertainties:

1. The accuracy in the visual phase determination on the 
screen of the cathode ray oscilloscope was 1 degree.

2. The accuracy of the frequency standard which entered 
into the determination of the resonance frequency was 0.5 
per cent.

3. The accuracy of determining the ratio between the am
plitude of the force applied and the alternating amplitude arising 

from it I-°| corresponded to the errors introduced by the two
W

valve voltmeters amounting to 2 per cent plus the uncertainty, 
arising from noise in the amplifier which for the smallest ampli
tudes applied (0.05 per cent of Lo) was 2 per cent. This gave 
a total uncertainty of at most 3.5 per cent.

The uncertainties (1) and (2) gave a resulting accuracy for 
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the determination of the elastic stillness of about 2.2 per cent 
when sr = 1, and 1 per cent when sr = 0.5. In addition to this 
there were the previously mentioned constant errors. The un
certainty in the determination of sr amounted to 3.5 per cent, 
excluding the error on the calibration for m, a, y.

Procedures used in transient experiments.
1. Introduction of a sudden change in load (isotonic transient).
An increase or decrease in load was effected by a change in the 

current in the coil (a) of the isotonic myograph (fig. 2). The resulting 
change in length of the fibre was recorded either by a direct 
optical method or via the photoelectric transmission described. 
In the latter case a relay system was used for adjusting the time 
intervals between release of a single sweep on the cathode ray os
cilloscope and the time for the change in load. The effect of the 
forces of inertia on the size and time course of the change in 
length are discussed in the section which deals with the initial 
process (see p. 45).

2. Introduction of a sudden change of length (isometric transient).
The electromagnetic arrangement, which was previously used 

for measurements of elasticity under isometric conditions, and 
which produced changes in length, was employed for this pur
pose (Buchthal et al. 1944 a, lig. 1). A sudden change in current 1
in the coil of the electromagnet was introduced instead of periodic 
changes in length. This produced a sudden movement of the 
forceps, which was limited by two adjustable slops. The time 
necessary for the system to adjust itself to the new length depended 
partly upon its equivalent mass (0.4 g.) and partly upon the 
velocity with which the moving force in the system increased j

when the current passed through the coil. Within the short .
intervals during which the variation in length took place, it must 
be considered that the moving force on account of inductance 
in the recording system, increased linearly with lime and conse- 
quently that the length varied with the third power of lime (p. 57).

1



Recording of isometric release contractions.
Release from the isometric maximum with different 

constant release velocities.
The elements of the experimental device are shown by the 

block diagram in fig. 8. The muscle fibre was placed in a chamber 
at 0° C. and fastened with two pairs of forceps at the tendon 
ends (1) and (2). The mechanical tension was transferred via the 
forceps (1) to the condenser myograph (Buchthal et al. 1944 a).

relayswitch

<J-C
amplifier

electro• 
magnetic 

valve

—CEEZ

piston
moving twee 2et - 
tor release . .

to electro
static 
oscillograph

Ihiyra Iron.
5t imufa tor.

high 
frequency 

Circuit

1 muscle fibre 1/ Capacity 
varied t y 
tension

Fig. 8. Block diagram of the arrangement for recording work diagrams during 
release contraction. (1) and (2) pairs of micro-tweezers to hold tendon ends of fibre. 
(3) muscle fibre. (4) contact recording 5 mm movement of piston and tweezer (2). 

Fig. 9. Device for operating release. 
Electromagnetic fluid valve (7) governing movement of piston (5). relays operating 
release (1) and stimulator (2). (4) contact marking a movement of 5 mm. (6) cylinder 
in which (5) moves. (8) disc to close valve (7). (9) tube connection to (5). (10) tube 

connection to vessel with glycerol, to prevent excessive pressure.
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The variation in length was introduced via the forceps (2) 
through an electrically operated hydraulic transmission. The 
forceps (2) was connected with the piston (5) which moved in 
the cylinder (6). A cog-wheel pump with variable rate of re

Fig. 10. Time course of fibre tension during a) isometric contraction and l)-e) re
lease contractions. Total stimulation period 0.5 sec. Release starts 0.1 sec. after 

the beginning of stimulation. Temperature 0° C.

Q the ratio between isometric tension and mean tension obtained during release, 
x release-length in per cent of the equilibrium length.

V. Q. X.

Curve
Curve

0 1.00 0
/>.... 0.15 0.79 12

Curve c ... . 0.30 0.60 23
Curve d. ... 0.93 0.31 45
Curve e ... . 1.27 0.23 46

V denotes the en forced speed of shortening in Lo per sec.

volution worked continuously and circulated glycerol between 
the valve (7) and a reservoir. The valve (7) was operated elec- 
tromagnetically. To close the valve (fig. 9) the relay operated a 
disc (8) and the liquid was pumped through the pipe (9) to 
the piston (5). This caused the forceps (2) to move with con- 
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stant velocity. When the piston (5) had moved the forceps (2) 
about 1 cm, the liquid left the cylinder (6) through the tube (10). 
By means of a switch (see tig. 9) the current was led to relay 
(2). The time of contact of these relays could be independently de
layed. By this means the muscle libre could be stimulated and 
allowed to contract isometrically (relay 2) before the change 
in length was released by means of relay (1). The stimulation 
was continued during the whole change in length, or in other 
experiments for 5 seconds. For controlling the velocity, the 
switch (4) indicated the time, when the piston had moved 
5 mm.

The work produced was calculated as the product of the 
mean value of the tension during the release experiment and 
the change in length introduced. The effect of the velocity of 
release on the tension produced in contraction is seen in fig. 10.

Preparation of the muscle fibre.
The experiments were carried out on single fibres or small 

bundles consisting of 3—20 fibres, from the semitendinosus 
muscle of the frog (liana esculenta and liana temporaria'). The 
muscle fibre was isolated in ice-cold Binger’s solution under a 
binocular microscope. The Binger’s solution contained per liter 6.7 g 
NaCl, 0.2gKCl, 0.2g anhydrous CaCl2, 0.2g glucose, 3 per cent 
dextrane1 (in order to obtain the same colloid-osmotic pressure 
as in plasma), and sufficient bicarbonate to give a pH of 7.3, 
when a gas mixture of 1 per cent C()2 and 99 per cent O2 was 
bubbled through; the solution in the chamber was changed every 
15 minutes, unless constant aeration was used.

Within 30 minutes to 1 hour the isolated fibres had adjusted them
selves to approximately constant values of excitability and shortening 
which persisted for many hours. As shown below (p. 133, 149) the 
specific force developed in the contraction of the isolated fibre 
and its relative shortening velocity exceeded that of a whole muscle, 
and it will hardly be justified to interpret possible differences as 
being due to “weak spots’’ or “invisible injuries”. An injury,

1 Dextrane kindly was supplied by A. B. Pharmacia, Stockholm.
Dan. Biol. Medd. 21, no. 7. 3
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however small, caused an essential decrease in contractility and 
excitability in the course of 10 minutes and these fibres obviously 
had to be excluded from further measurements. Also small in
juries could be detected optically as an increase in opacity of 
the fibre.

Temperature: In the majority of the experiments the standard 
temperature in the Ringer’s solution surrounding the muscle fibre 
was 0° C. To obtain constant temperature salt water of suitable 
temperature adjusted by means of a thermostat was passed by 
a circulation pump through the side walls and the bottom of 
the muscle chamber (k, fig. 2). In the circulation system a stop 
cock was inserted, whereby it was possible to shift quickly from 
circulating fluid of 0° C. to a desired higher temperature. By a 
thermocouple placed in immediate neighbourhood of the muscle 
fibre, the temperature of the Ringer’s solution was checked con
tinuously.

Electrical stimulation.
The fibre was stimulated by rectangular pulses, the strength, 

duration, and frequency of which could be varied. The duration 
and frequency were adjusted to give maximal reaction at the 
temperature in question. The strength was at least 3—5 times the 
threshold value and was measured by a valve voltmeter in the 
stimulation circuit. In experiments at 0° C. an impulse with the 
duration of 10 msec, usually was applied, and, in tetanic con
traction, the stimulation frequency was 15—20 c.p.s.

For stimulation an electric field was produced along the 
length of the fibre (Ramsey and Street 1941) by leading the stimu
lus to two silver plates coated with silver chloride, which were placed, 
at right angles to the axis of the fibre, at the forceps and at the 
lever arm, respectively. Between these plates a homogeneous 
field was produced. By adjusting the stimulation to be sufficiently 
above the threshold value, it was possible to excite the fibre so 
as to get simultaneous activation of the major part of it. Even 
if a propagation of the impulse over the whole length of the 
fibre had to be taken into account, this would only take 10 msec.1

1 Assuming a propagation time of 1.6 m. per sec. (20° C., Katz 1948) and a 
temperature coefficient Qlo = 2.
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and would not be of decisive importance either for the shortening 
velocity or the position of the initial maximum of stillness. In 
order to produce a homogeneous field along the longitudinal axis, 
the walls of the muscle chamber were covered with an elec
trically insulating paint. When the stimulation was transferred 
exclusively by way of the forceps, and the fibre was placed in 
V-shape, the conditions for obtaining maximal reaction were 
less well defined. Part of the experiments were performed on 
fibres from completely curarized muscles (d-tubocurarine chloride1 
50—250 //g per g frog).

Determination of equilibrium length and measurement of 
changes in length.

The equilibrium length (Åo) of the fibre or the fibre bundle 
was defined in the present experiments as the length with a load 
of 5 dynes (appr. 0.005 Po), and was determined directly with a 
microscope. The forceps were adjusted with the micrometer 
screw (1, fig. 2) until the recording system came into equilibrium. 
The position of the light spot on the recording camera (20, fig. 4) 
or on the triangular concave mirror (13, fig. 3) was used as an 
indicator and the value was read on the micrometer screw. 
Every change in the length of the fibre was shown by a move
ment of the light spot and was measured by moving the micro
meter screw until the spot regained its original position. The 
difference between the readings of the micrometer screw at 
equilibrium length and the new length gave the variation in 
length in mm.

In order to be able to compare the experimental results 
from fibres or fibre bundles of different diameters in the final 
treatment of the material, the relative length was used instead 
of the length measured in cm, the equilibrium length (Lo) being 
used as a reference length (see p. 40). The velocity of movement 
was also expressed relatively, the absolute velocity measured in 
cm per sec. being divided by the equilibrium length of the fibre 
measured in cm.

1 Tubarine, Borroughs-Wellcome Co.
3*
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Experimental procedure:
1. Determination of fibre length at rest and during contraction as a 

function of load and time.
At rest the length of the fibre was determined at a given load 

by the compensation method, i. e. through a movement of the 
micrometer screw (1, fig. 2) with the light spot as an indicator. 
During isotonic contraction the length was recorded photo
graphically for direct analysis of the length-time dependence as 
shown in fig. 4.

Measurements of the force in isometric contractions were 
performed by supporting the fibre (n, fig. 2) at a definite length 
at rest. A force Po was transmitted by way of the lever (7J0 denoted 
the maximal force in isometric tetanic contraction). The sup
ported and loaded fibre was stimulated to tetanus, and after 
1—2 sec. of stimulation, when the maximum tension of contraction 
could be expected to have been reached, the external force was 
decreased until a movement of the light spot was just observed. 
The deviation from purely isometric conditions was less than 
0.5 per cent of the equilibrium length.

2. Recording of release contractions with different loads at rest.

The experiments started by the application of the desired 
load al rest and measurement of the corresponding length by 
compensation with the micrometer screw. The fibre was then 
supported at this length and a load was introduced which ex
ceeded Po. The latter was measured by a slow reduction of the 
load as in isometric contraction; and the load was then reduced 
during the tetanus until the resting load was reached. The new 
length in contraction could be measured by compensation with 
the micrometer screw.

3. Determination of dynamic elastic and viscous stiffness at rest and in 
tetanic contraction.

Measurement of lhe resonance frequency (to0) al rest with 
different amplitudes of the periodically varying load was 
performed by varying the frequency of the alternating current 
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generator until the axes of the Lissajous figure (“ellipse”) coin
cided with the axes of the oscilloscope screen. The amplitude 
of oscillation was varied from the lowest value which permitted 
phase discrimination, stepwise upwards, until the periodic 
variations in load caused changes in length of the libre of about 
2 per cent of Lo (peak to peak). The measurements at low am
plitude were then repeated. Values for the force and length 
amplitude were read on the valve voltmeters (8) and (17) (fig. 3). 
Unless otherwise stated in the following the values of amplitude 
denote the deflection from the mean position. The absolute value 
of the smallest amplitude of oscillation used amounted to 1 p 
which was measured with an accuracy of about 0.1 p; the largest 
amplitudes used were 50 p. The length amplitudes (y0) were ex
pressed in per cent of Lo. Their absolute values were calculated by 
means of equation (18). Hence the length amplitude in per cent 
of the equilibrium length becomes:

7o =
2-5 mVx
L0mV5 ’ (22)

where Lo denotes the equilibrium length measured in cm, mVx the 
deflection in millivolts measured on the valve voltmeter (17, fig. 3), 
corresponding to a definite force amplitude, and mV5 the de
flection read in millivolts on the valve voltmeter, which corre
sponded to a length amplitude of the recording system of 0.05 cm 
(peak to peak). The relative length amplitude in the experiments 
varied between 0.02 and 1 per cent. At an amplitude of movement 
of about 3 per cent, the oscillations of the force amplitude were 
of the same order of magnitude as the mean tension.

The amplitudes of the oscillating force producing the length 
amplitudes varied between 15 and 80 dynes. In the majority of 
experiments the force did not exceed 50 dynes. The force acting 
on the fibre can be obtained by subtracting the inertial force from 
the external force (p. 80). In order to minimize errors in the 
measurement of the resonance frequency in isotonic tetanic con
traction the displacement of the light spot was compensated for 
by moving the entire contracted fibre and the attached lever 
back to the initial position. This ensured that the same area of 
the light sensitive layer of the photo-electric cell was illuminated 
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as at rest. co0 was then adjusted in the same way as described 
above for the resting fibre. During isometric contraction the re
sonance frequency was determined when Po was reached and 
the load just permitted the fibre no longer to touch the support n 
(fig. 2). Also during isotonic and isometric contraction the measure
ments were performed at different amplitudes of oscillation.

When measuring stiffness during tetanic contraction, the small 
fluctuations of length, which at high temperature (20°—24° C.) 
even at maximal tetanic contraction could not be avoided, 
caused the Lissajous figure to “jitter” and a satisfactory deter
mination of the resonance frequency became extremely dif
ficult. Therefore, it was necessary in these experiments to use 
a phase-corrected high-pass filter. In the frequency range 25—150 
cycles per sec. the phase displacement of the filter introduced 
an error in the resonance frequency measurements of less than 
1 cycle per sec. In the experiments in question the resonance 
frequency was measured at rest and during tetanic contraction 
using the same filter.

In order to investigate elastic and viscous stiffness under the 
same conditions, but with different m0, an additional mass (equi
valent mass — 0.7 g) was placed on the lever, so that the equili
brium between the force of inertia and the elastic force was ob
tained at about a quarter of the resonance frequency without 
extra mass. In order to check on time effects during a given 
experiment the resonance frequencies with additional mass were 
determined before and after the basic measurements, i. e. de
terminations without additional mass.

Pari II.
1) The rheology of the resting fibre.
Length-tension diagram of the resting fibre.

A length-tension diagram of the resting muscle fibre showed in 
agreement with previous investigations carried out under isometric 
conditions (Buchthal 1942), an approximately exponential 
increase in tension with increasing length (fig. 11). Length 100 
denotes the equilibrium length (Lo), and the tension (7J) is ex
pressed in relative units (P/Po), where Po corresponds to the
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isotonie load which causes the shortening velocity zero, i. e. the 
tension found at the indifference point of the length-tension 
diagram, the point at which the curve for the isometric maxima 
and the curve for the resting fibre coincide. This tension cor
responds very closely to the maximal tension, developed in an

/es?g¿/7
Fig. 11. Static length-tension diagram of the isolated fibre at rest. Mean curve 
of many experiments performed with increasing and decreasing length. 0° C. 

ordinate: tension in units of Po.
abscissa: length in per cent of Lo, definition of Lo see text p. 35.

isometric tetanic contraction (Hill 1938). The curve given in 
fig. 11 represents a mean value of many experiments at 0° C., 
each of which is a mean curve for rising and falling tension. 
Also in the present material static stiffness, i. e. the gradients of 
the length-tension diagram, increased proportionally lo the 
load corresponding to the exponential increase in tension with 
elongation of the fibre (cf. Buchthal 1942).

Since different investigators have used different criteria for a 
reference length, it is necessary to define the length unit used in 
the present experiments and to relate it to “resting length” (Ram- 

I
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SEY and Street 1940) and “natural length”, “length in the body” 
(Hill 1949, e).1 By equilibrium length (length 100) is understood 
the length at which the fibre develops a tension of 5 dynes corre
sponding to approximately 0.005 Po. Before the equilibrium 
length was determined, the fibre was stimulated to 1—3 twitches 
in order to test its condition and to eliminate the aftereffect of 
stretchings to which the fibre might have been subjected during 
isolation and mounting in the myograph. The fibre then remained 
in the Binger’s solution for 15 minutes at 0° C. The tension 5 
dynes did not in all cases cause the fibre to lie completely taut 
between the points of support.

Ramsey’s “resting length”, which is defined as the length at 
which maximum tension is developed in isometric contraction is 
120—130 referred to the unit of length used in the present ex
periments. The unit used by Hill, “natural length”, corresponds 
to a length of 135—165 in our length units, since the muscles 
examined by Hill still developed tension down to 60—75 per 
cent of their natural length.

Mechanical hysteresis in length and tension,

Elastic aftereffects or plasticity causes time to be an im
portant factor in the determinations of length and tension (Blix 1892). 
Tension at a given length will thus always be higher during extension 
from a shorter length to the given length than during release from 
a longer length. Moreover, the tension will be lower the longer 
the time internal in which the muscle fibre had previously been 
subjected to stretching, and the higher the degree of stretching 
to which it had been subjected. Due to these different factors, 
a length-tension diagram will show hysteresis, the amount of 
which depends upon the way in which the length-tension diagram 
is obtained. As indicated by a number of different findings (e. g. 
transient experiments cf. p. 45 If.), this hysteresis is not caused 
by Newtonian viscosity, i. e. a resistance arising from internal 
friction which increases linearly with the velocity of deformation 
but is explained as a “structural viscosity".

1 Abbott (1951) uses “maximum length in the body, (resting length)” as 
reference.
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In the following it will be shown in detail, how the muscle 
fibre adjusts itself with considerable retardation to changes in 
its state, e. g. in length, tension, or temperature. Neither a 
linearly acting damping, nor fluid displacements can explain 
this delay adequately. Therefore, in the interpretation of the follow
ing experiments a picture will be applied, previously indicated by

/eng /h m mm.
Fig. 12. Series of successively recorded length-tension diagrams.

O°C.Tlie figures oil the curve denote the time in minutes after the beginning of stretch. 
ordinate: tension in dynes, 1000 dynes = Po. 
abscissa: length in mm.

Hii.l (1931) for the active fibre which corresponds with certain 
modifications to the conception of minute structure arrived at in 
rubber-like substances and in high polymers.

The fibre is assumed to consist of chains of contractile material 
which are entangled at random, but hold a certain degree of 
longitudinal orientation. The disrupture and the reformation of the 
entanglements will determine the delayed reaction of the fibre to 
external or internal mechanical alterations. This interpretation of 
the minute structure is supported by the fact that torsional 
rigidity of the isolated fibre exceeds 20—5 times that of a system 
of parallel chains without entanglements (Sten-Knudsen 1950). 
This finding demonstrates the important rôle of cross-linkages 
for the minute structural pattern. A change in load will imply 
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an alteration in the minute structural pattern of the libre. The 
velocity with which this proceeds depends upon the frequency 
for the transitions in the structure which cause these alterations; 
its final size depends upon the minute structural elements and 
the texture in which these are organized. A difference in length at 
the same tension obtained by extension or release under static 
and semidynamic conditions must essentially be interpreted as 
more or less reversible alterations in the textural pattern (dis- 
rupture and reformation of entanglements). Under dynamic 
conditions transformations in the minute structural elements 
themselves also to a considerable degree contribute to the visco
elastic properties.

Fig. 12 shows length-tension diagrams taken successively over 
a period of 90 minutes. The first was markedly different in shape 
from the following length-tension diagrams. The length with a 
load of 5 dynes was 6.5 mm. After the first extension to 1000 
dynes (= Po) followed by release to 10 dynes, the length was 
increased to 8.7 mm. The large effect of the first stretch may be 
concealed by the manipulations to which the fibre might have 
been subjected during the preparation. The following extension 
and release diagrams, each of which lasted for 15 minutes, all had 
the same shape. The difference between stretch and release 
amounted maximally to 0.35 mm and the elongation after a cycle 
was about 0.2 mm.

The difference between the first curve and the following 
length-tension diagrams must be due to a large alteration in the 
minute structural pattern of the fibre, which required about 1 
hour for restitution. This alteration in structure was also re
flected in the change in the elastic properties. The stiffness of 
the fibre varied more strongly with the tension after the first 
extension, the stiffness then being higher at maximal loads and— 
considerably lower at small loads.

Effect of temperature.

The temperature only very slightly affects the length-tension 
diagram of the resting fibre. The variation in tension with 
temperature is maximal at length 120 and the increase in tension 
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at the same length amounted to 0.15 per cent per degree of 
increase in temperature (Buchthal et al. 1944a). The percentage 
variation in tension thus was less than half of the corresponding 
variation in absolute temperature, in contrast to rubber, for ex
ample, for which a proportionality to the absolute temperature 
is found. The temperature coefficient found for the resting tension 
of the muscle fibre corresponded to a decrease in length of 1 
per cent at an increase in temperature of 25° C.

Josenhans (1949) found twice as large a dependence on 
temperature for whole muscles at low degrees of extension as 
that found in single fibres. The cause of this difference may 
perhaps be sought in the fact that he used a new muscle, which 
had been resting for some time before the experiment, for each 
determination of the temperature coefficient. In the experiments 
carried out on the single fibre, the fibre had been subjected to 
some stretches and releases before the determination of the tem
perature coefficient, since the first stretching gave a length-tension 
diagram differing essentially from the following ones. At each 
level of tension, measurements of tension were performed at 
varying temperatures for a period of 2 hours. It is possible that 
the component of the fibre tension causing the different course 
of the first extension is chiefly thermo-elastic and may explain 
the more pronounced temperature dependence at a low degree of 
stretch found by Joseniians.

An inversion of the temperature dependence from length 144 
was found by Joseniians and by Wöiiliscii and Grüning (1943). 
Since 44 per cent of stretch in a whole muscle containing fibres 
of different equilibrium lengths may well indicate that some of 
the fibres are stretched about 100 per cent, the inversion found 
does not disagree with the experiments on single fibres, in which 
the temperature coefficient was examined only up to length 180. 
The decreasing temperature dependence found with increasing 
degree of stretch does not exclude a point of inversion at higher 
stretch. The reversed temperature dependence may also, how
ever, be due to the intramuscular connective tissue, which will 
play a more important rôle in a whole muscle than in a single 
fibre.

The elastic after-effect had a different temperature dependence 
in the muscle fibre than in rubber. As appears from the length- 
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tension diagrams in fig. 13 the hysteresis in the fibre bundle is 
larger at 21° C. than at 0° C. In the example shown in fig. 13 
the increase and the decrease in length took 20 minutes. The 
hysteresis at 21° C. amounted to 22 per cent of the maximal 
tension and at 0° C., to only 14 per cent. We have found the

Fig. 13. Static length-tension diagrams recorded with increasing and decreasing 
tension. Duration of each cycle 20 minutes. First cycle 0°, second cycle 21°, and 
third cycle 0° C. Curve at 0° C. represents mean from the first and the third cycle. 

ordinate: tension in dynes, Po = appr. 1000 dynes. 
abscissa: length in per cent of Lo.

reverse to be the case for normally vulcanized rubber, the hysteresis 
at 25° C. being 16 per cent and at 0° C. 37 per cent of the maximal 
tension (L — 1200), while the hysteresis was larger—but less de
pendent on temperature—in undervulcanized rubber (stretched 
up to L = 650, 36 per cent at both 0° and 25° C.).

The hysteresis found in the length-tension diagrams of the 
muscle fibre may be due to permanent deformation (plasticity) 
and/or to elastic aftereffect. In order to decide between these two 
possibilities the slow adjustment to the stationary state after rapid 
changes in tension or length was investigated as a function of 
time under well defined experimental conditions. Such experi
ments are denoted transient experiments in what follows.
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Transients.
1. The course of elongation following loading in the resting fibre

(isotonic transient).

a) Initial adjustment (up to 20 msec.).
When the muscle libre was subjected to a sudden increase 

in load (/I P = 0.05 to 0.5 /■>0),1 its length increased as a function 

Fig. 14. Analysis of the time course of length, velocity, acceleration, and force 
after a sudden increase in load of 530 dynes in the resting muscle fibre. 0° C. 
curve I: resulting change in length, ordinate I in ft.
curve II: velocity of change in length, ordinate II in cm per second.
curve III: positive (a) and negative (b) acceleration, ordinate III in cm per sec.2 

or transformed to inertial force, ordinate IV in dynes.
curve IV; resulting force acting on muscle fibre itself, ordinate IV in dynes. 

abscissa: time after increase in load in msec.

of time, first rapidly and then more and more slowly. The initial 
course was examined in a special series of experiments, in which 
the variation in length during the first 20 msec, was recorded 
through photoelectric transmission by a cathode ray oscilloscope 
(cf. p. 20). Since the initial course was markedly affected by 
the inertia of the system, the resulting effect on the tension had 
to be taken into account in the evaluation of the variation in 
length caused by the change in load.

When a force is introduced into a system having a given
1 With regard to the size of zl P applied to the isolated fibre compared with 

that examined in whole muscle, see p. 158.
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Fig. 15. Partial length-ten
sion diagrams.

Length as a function of load 
in the first 4 msec, during 
a sudden increase in load. 
Besting muscle fibre, 0° C. 
Different initial loads at final 
load 0.25 Po and 1.0 Po. Ini
tial and final value of load 
arc denoted by the figures on 
the curves. The points of 
curve 0.33-1.0 Po indicate 
time in msec, after change 

in load.
ordinate: tension in units 

of Po-
abscissa: elongation in per 

cent of Lo.

equivalent mass, elastic force, and dam
ping resistance, a change in length is 
produced. From the extra load introdu
ced, the recorded course of stretch, and 
the equivalent mass of the system it is 
possible to calculate the force of inertia, 
and hence the real tension to which the 
libre is subjected.

From this a partial length-tension 
diagram of the muscle fibre can be cal
culated, as it occurs within an interval 
of about 5 msec, during a sudden change 
in load. The procedure is given in fig. 14. 
The libre bundle (2—3 fibres) had an 
initial load of 266 dynes. The recording 
system + fibre was then subjected to an 
extra force (d P) of 530 dynes. The result
ing change in length in // is seen in curve 
I ; the curve is S-shaped and continues 
as a damped oscillation. The slope of 
curve 1 gives the velocity, which is given 
directly in cm per sec. in curve II. The 
slope of the velocity curve corresponds 
to the acceleration, which acts on the 
system 4-fibre (curves Illa and 111b). 
Thus, knowing the acceleration and the 
equivalent mass of the system, the force 
of inertia could be determined. This was 
initially equal to JP (530 dynes). At 
1.7 msec, the inertial force passed zero, 
the velocity simultaneously approaching 
its maximum. The extra force, which 
acted on the fibre, hence, was initially 
zero and increased gradually as the iner
tial force decreased. When the inertial 
force was zero, all 530 dynes thus acted 

on the fibre alone. After this, the velocity decreased, the inertial 
force reversed sign (curve IHb) and therefore added to the ex
ternal extra load so that the resulting force acting on the fibre ex- 
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ceeded 530 dynes. The course of the resulting force acting on the 
fibre as a function of time is given in curve IV. Thus, from 
curves IV and I the dynamic partial length-tension diagram can 
be plotted.

Partial length-tension diagrams for different initial loads are 
seen in fig. 15. It is characteristic of these diagrams that during 
the first increase in length up to about 1 per cent the tension 
increases rapidly, and for further increase in length the increase 
in tension was considerably less. From the shape of the static 
and semidynamic length-tension diagram one would expect a 
curvature concave upwards, i. e. for curve 0.08 to 0.25 PQ an 
initial gradient, which was considerably less than the final one. 
A small percentage variation as e. g. from 0.2 to 0.25 Po gave a 
straight line. The non-linear course at larger changes in load 
(> 20 per cent) appeared in the initial part in a manner sug
gesting a plastic deformation, namely the gradient of the re
sistance decreased and sometimes became negative with elonga
tion. Thus the purely elastic resistance of the fibre was reduced. 
I'he decrease in the elastic component of the mechanical reaction 
of the fibre manifested itself, furthermore, in the course of the 
after-oscillation in the region beyond that indicated in curve I, 
fig. 14. The damping manifested by the decrement in the after
oscillation is most pronounced at high loads and large changes 
in length.

A further differentiation between elastic and viscous forces 
and plastic changes in the initial course was performed by com
paring the fibre + recording system with a model which con
tains a known mass, elasticity, and damping. Fig. 16 shows the 
response (a = length, b = velocity) of the individual components 
as well as different combinations to a sudden change in load.

When a constant force acts on a mass (m), the change in length 
increases with the square of time and the velocity linearly with time. 
The effect of the force on an elasticity (G) causes an immediate increase 
in length, which in fig. 16 (a) appears as an increase in length constant 
with time and in fig. 16 (b) with velocity zero, apart from the instant 
at which the force is introduced, when the velocity is infinitely high.

If the force acts on mass and elasticity (m + G), the result is an 
oscillation with an amplitude varying between zero and twice the 
increase in length which the force could impose on the elasticity alone, 
fhe corresponding velocity is zero at the moment of loading and reaches
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Fig. Kia and b. Course of elongation (a) and velocity (b) as a function of lime in 
a mechanical system subjected to a sudden change in load (isotonic transient). 
System consisting of: 
curve g: viscosity 
curve m: mass
curve m + g: mass + viscosity
curve G: elasticity
curve G + g: elasticity + viscosity in parallel (Voigt-element)
curve G + in: elasticity + mass
curve G + g + in: Voigt-element + mass, oscillating and aperiodic course. 

ordinate: (a) elongation, (b) velocity, linear scale. 
abscissa: time, linear scale.

The viscosity is adjusted so that the oscillation amplitude decreases to 
the course of one oscillation period.

in

its maximum when the length has reached its point of inflection. At 
2

that time the velocity is — times that which the mass alone would have.
A damping resistance (g) when it is acted upon by a constant force 

gives an increase in length which is linear with time, and a corre
sponding constant velocity.
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When the force acts on a combination of mass and damping re
sistance (m 4- rj), the change in length first follows that which the system 
would have had with mass alone, since the forces of inertia predominate 
as long as the velocity is low. With increasing velocity, the damping 
resistance increases, hence the acceleration decreases, the velocity be
comes constant, and the length increases linearly with time. The 
velocity for this combination rises exponentially towards its maximum 
which is determined by the damping resistance.

If mass, damping resistance and elasticity (m -f- p T G) are 
combined and r¡ and G are in parallel, an oscillating movement 
with decreasing amplitude is obtained. If the damping resistance 
exceeds a critical value, the oscillation becomes aperiodic. This 
is the case when rf > 4 m G, i.e. sr > 2 (cf. p. 17).

The response of the muscle fibre to a sudden increase in 
load resembled the curve calculated for a combination of mass, 
elasticity, and viscosity. The first period of the oscillation indicated 
the presence of an almost aperiodically damped elasticity. 
However, this was followed by a small oscillation with a much 
smaller decrement than that corresponding to the first phase of 
the oscillation. At the same final load, varied between 0.25 and 
1.0 Po, it was furthermore found that the amplitude of the after
oscillation was practically independent of the size of the variation 
in load, although it might have been expected a priori that the 
amplitude of oscillation would increase with increasing A P. This 
was true as long as AP was < 50 per cent of the final load. 
When AP exceeded 50 per cent of the final load, a considerable 
increase was usually seen in the decrement of the after-oscillation. 
Thus, in the first half period of the oscillations an increasing 
proportion of the energy introduced in the transient was absorbed. 
The ratio between the total elastic energy and the dissipated 
losses decreased with the amount of energy introduced. This 
means that viscosity with rising AP dominated the mechanical 
reaction of the fibre increasingly, and must be interpreted as 
being caused by a “plastic” elongation, which always occurred 
when the variation in load exceeded 20—25 per cent of the final 
load. As long as AP was less than half the final load, the plastic 
yielding was completed within the first half period of the stretch. 
Al higher variations in load it may continue and cause a com
pletely aperiodic course.

In the cases in which the decrement of the after-oscillations
Dan. Biol. Medd. 21, no .7. 4
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was so small that the period could be determined, the elastic 
component, i. e. the dynamic elastic stillness was calculated on 
the basis of the simple spring-mass formula. In comparison with 
the magnitude of the dynamic stillness measured during con
tinuous vibrations of the same frequency and at stationary load 
the vibrational stillness measured immediately after transient was 
50—00 percent higher. For example the experiment given in fig. 18 
showed a relative stillness calculated from the frequency of after
oscillations of 30 L0—l, while the stiffness obtained with con
tinuous vibrations was 18—20 Lo 1 (0° C.). The cause of this 
difference is discussed on p. 104.

If instead of the initial course of length and tension (i. e. 
within 5 msec.) the elongation was measured which was attained 
50 msec, after the transient change in load, the corresponding 
dynamic length-tension diagrams had an exponential course. 
Thus, as in static experiments, the differential quotient increased 
with increasing length and tension, but the gradient referred to 
the same tension was 3 to 5 times steeper than in static diagrams. 
An increased initial load, with the same extra load, resulted in 
a shorter elongation just as the gradient, i. e. the stillness, was higher 
at a higher load. Table 1 shows the stiffness (expressed with Po 
as unit of tension and Lo as unit of length) at different initial 
loads and variations in load. The dynamic stiffness measured

Table 1.
Dynamic stiffness in isoIonic transient measured in PoL^"l(O°C).

Initial load P[P0 0.125 0.25 0.50 0.75

Stillness at 2 °/0 variation in length, 
time of adjustment 20 msec.............
StifTness at 5 °/0 variation in length, 
time of adjustment 20 msec.............
Stiffness at 8°/0 variation in length, 
time of adjustment 20 msec.............

3.2 
(16)
3.7
(14)
4.5
(13)

5.0 
(14)
6.0
(13)
8.25
(13)

9.0
(14)
10.0
(13)

12.5
(14)

StifTness after a transient producing a 
variation in length of 2°/0, 

time of adjustment 10 sec................
1.65
(9)

2.8
(9)

6.2
(10)

The figures in brackets denote the relative stiffness (for definition see p. 59).
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20 msec, after the change in load varied between 3.2 and 12.5 
PoxLo~1 (0° C.). At the same initial load the stillness increased 
with increasing additional load. On account of the proportionality 
existing between both static and dynamic stiffness and load this 

> increase was to be expected. However, referred to the mean load
(Table 4, p. 61) the increase in stillness in transient experiments 
is slightly less than proportional to the load (cf. also dynamic

Fig. 17. Maximum velocity of changes in length in isotonic transients as a function 
of the change in load for different mean loads indicated in units of Po by the figures 

on the curves (0° C).
ordinate: maximum velocity in units of Lo per sec. 
abscissa: change in load in units of Po.

elastic stiffness, p. 80). If the stiffness was measured from the 
elongation 10 sec. after the change in load, it was reduced to 
half. If the mean tension was taken into account (relative stiff
ness) the reduction was less pronounced and amounted to 
approximately 40 per cent (see also Table 4).

The maximal velocity of the change in length produced by 
different transient loadings as a function of the additional load is 
given in fig. 17. These curves are taken from a series of experi
ments in which we have varied both the initial load and the 
ratio between the additional and the final load. For a given 
mean load (Pnf) the maximum velocity varied linearly with the 
transient load applied. The difference in slope at different values 
of Pm was due to the non-linear course of the length-tension 

4*  



52 Nr. 7

diagram. With the additional load equal to the initial load, the 
maximum velocity of elongation was attained on an average at a 
time at which the elongation was 37 per cent of the elongation 
al the start of the after-oscillations. This value was independent 
of the initial load. From these experiments it is seen that the 
tension changes with a decreasing gradient when the stretch is 
increased (cf. partial length-tension diagrams fig. 15).

A rise in temperature of 25° C. caused an increase in the

Difference in mechanical reaction between first (I) and second (II) quick increase 
in load 0° C. Load changed from 285 to 400 dynes, 800 dynes = Po; relative 
stiffness1 = 19 at first transient and 22.5 at second transient.

ordinate: elongation in per cent of Lo.
abscissa: time after increase in load in msec.

initial change in length of 30 lo 50 per cent as compared with that 
found at 0° C. In the range examined, the effect of the temperature 
did not vary appreciably with changes in the additional load 
and the initial load.

Thixotropy.

The plasticity or thixotropy which must be assumed in order 
to explain the mechanical reaction of the fibre in the dynamic 
phase of the transient experiment, was also obvious from the 
softening effect which repeated transients had within the same 
level of load. At an initial load of e. g. 0.25 Po and an additional 
load of 0.04 Po an increase of 0.24 per cent of the fibre length 
(0° C.) was observed at the first loading. The initial elongation 
increased with repeated loadings and at the fourth transient 
amounted to 0.38 per cent of the equilibrium length. Relative 
stiffness1 calculated from the first transient was 52.0 and from

Relative stiffness = stiffness
load + stiffness-tension (cf. p. 59).
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the fourth 33.0. A comparison of the present example with the 
one illustrated in fig. 18 shows the highest values of the relative 
stiffness, when the transient amplitude was small (cf. amplitude 
dependence of vibrational stiffness, p. 84 and stiffness measured 
by the period of after-oscillations p. 50). Apart from the in
crease in length amplitude, repeated loadings simultaneously 
caused an increase in the velocity of elongation in the initial 
phase of the transient, while the amplitude of the after-oscillations 
decreased. The plastic change described could thus be obtained 
by a few repetitions when the variations in length amounted to 
only 0.2—0.3 per cent. The changes were not permanent and 
the libre regained its original stiffness after a few minutes of 
recovery. The temporary decrease in stiffness showed that the 
resting fibre was thixotropic. At high degrees of stretch (above 
length 170) the thixotropy could no longer be observed. In this 
range of stretch the orientation caused by the initial tension 
dominated the resistance of the fibre, and hence the change 
caused by the thixotropy became of less importance. When very 
high additional loads were repeatedly applied, the stiffness of 
the fibre decreased to the same level as the static stiffness.

When the fibre suddenly was partially unloaded, it shortened 
with about the same initial velocity as that which was measured 
during elongation between the same loads. At release, however, 
the high velocity was maintained over a variation in length 
which exceeded that observed during quick loading by about 
50 per cent.

b) Prolonged creep (> 20 msec.).
At 20 msec, alter transient there was still some distortion 

owing to the inertial force of the recording system. 50 msec, after 
the change ill load this distortion (damped oscillation) had 
mainly disappeared and a smooth variation of length was ob
tained as a function of time.

Fig. 19 shows the effect of a change in load as a function of 
time. The units of the abscissa vary from curve to curve in the ratio 
1:10. Curve I thus gives the course between 0 and 0.1 sec., 
curve II between 0 and 1 sec. and curve III between 0 and 10 
sec. In the experiment shown the variation in load amounted 
to 50 dynes. In spite of the three different axes, the shape of the
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Fig. 19. Adjustment after a sudden change in load of 50 dynes, initial load 17 dynes. 
(Po = 1000 dynes), 0° G.

ordinate: elongation in per cent of Lo. 
abscissa: curve I time in units of 0.01 sec.

curve If — - - - 0.1 sec. 
curve III- - - -1.0 sec.

The irregularity in the initial part of the curves between 0 and 50 msec, is due to 
the damped oscillation caused by the inertia of the recording system plus 

muscle fibre.

Fig. 20. Elongation after increase in load as a function of time in the resting fibre 
and during isotonic tetanic contraction, 0° C.

Different initial and additional loads. The figures on the curve denote the additional 
load in units of JJ0. The initial load was J of the additional load. 

Thick lines: tetanic contraction.
thin lines: resting fibre.
ordinate: elongation in per cent of Lo.
abscissa: time after increase in load in msec., logarithmic scale.
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curves was very nearly the same and this makes it natural to 
express the variation in length as a function of the logarithm of 
time. Fig. 20 gives for similar experiments the elongation in per cent 
of Lo as a function of the logarithm of time, and it is seen that over 
a long range of time (2—3 decades) the lengths vary approximately 
linearly. In the example shown in the figure, the recording was 
finished after 10 sec. Other experiments with an observation time of 
more than 15 minutes showed that the elongation continued 
to be approximately proportional to the logarithm of time. 
The change in length can, therefore, be written in the form: 

i. e.

L(f) = L(l) + Q logt
(23)

where L(l) denotes the length of the fibre at the time 1.

Table 2.
Changes in length and Cz in the resting muscle fibre as a func

tion of time at different additional loads (0° and 25° C.).

Temp. °C. dP
Po

dL at
0.02 sec.

dL at
0.14 sec.

dL at
1.0 sec.

Ci in per 
cent of the 
equilibri
um length

0. . . 0.05 10.0 17.65 25.0 4.00
25. . . 0.05 20.5 25.85 30.6 2.91
0.. . 0.10 17.3 25.45 33.5 4.21

25. . . 0.10 20.6 26.00 31.35 2.80
0. . . 0.20 22.0 31.45 40.6 4.77

25. . . 0 20 27 8 35 7 43 1 4 19
0. . . 0.50 26.6 33.35 40.0 3.52

25. . . 0.50 38.0 40.75 43.8 1.46
dP = P,—Pt, where Pi is the initial and Pt the final load. For increasing load 

Pi = 4 Pi and for decreasing load Pt — ¡Pi. The constants found are mean values 
for positive and negative values of d P¡P„. The variations in length and Ci are expressed 
in per cent of the equilibrium length.

Table 2 gives values for the constant Cz which is the velocity 
at lime 1 sec., for different additional loads at 0° C. and 25° C. 
As a function of AP/P0 Ct has a maximum between 0.1 and 0.5 
at 0° C., and decreases rapidly with rising temperature. This fall 
in Ct is apparently paradoxical, since a higher velocity would 
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have been expected at higher temperature. The higher velocity 
is actually seen, but only in the initial course. As the total variation 
in length at a given variation in load is practically independent 
of temperature, the slow variation in length becomes less at high 
temperature and hence the reduction in velocity during the pro
longed creep becomes comprehensible.

2. The course of stress-relaxation following sudden changes in length 
in the resting fibre (isometric transient).

a) Initial course, up to 1.5 msec.; development of tension.
When the libre was stretched suddenly, the tension rose and 

reached its maximum when the extension was completed. Here
after the tension fell oil’, first rapidly and then with decreasing 
velocity, but always approaching a final tension higher than the 
initial one. After 10 msec., according to the initial load, at 0° C. 
the decrease in tension amounted to 30 to 70 per cent of the 
maximal increase in tension. There was no significant difference 
in the relative course of stress-relaxation after quick stretches 
of 7 and 13 per cent of Lo.

By analogy with experiments with sudden changes in load 
an attempt was made to characterize the initial course by a 
dynamic partial length-tension diagram. Since the sudden change

Fig. 21. Time course of tension during and after a quick increase in length of 
13 per cent of Lo. 0° C.

r =. in the resting fibre.
c — during isometric tetanic contraction. 

ordinate: tension in arbitrary units, Po = 100 units. 
abscissa (below)', time after start of the increase in length in msec. 

small scale above: elongation in per cent of Lo.
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z ¿ per cent.
Fig. 22. Partial length-tension diagrams obtained from the initial course of isometric 
transients at rest and during contraction. 0° C. Duration of increase in length 
approximately 1 msec. The length is assumed to increase with t3 (see text).

a. 

O

X 

▲ 
O
+ 
X 

resting fibre.

X-------- isometric tetanic contraction.

The figures on the curves denote the initial length in per cent of Lo. 
ordinate: tension in arbitrary units, Po = 75 units.
abscissa: (below) elongation in per cent of Lo.

(above) time after the start of the increase in length in msec.
With regard to differences in the gradients of the length tension diagrams in curves 

with the same initial and different final length, see text (p. 58).

in length was introduced by means of an electromagnetic system, 
it proceeded with increasing velocity owing to inductance and 
inertia. However, considering that the electrical time constant of 
the moving system was approximately 10 msec., the moving force 
acting on the system within the first msec, could be assumed to 
increase linearly with time. Since the force exerted by the fibre 
did not exceed 1 per cent of the inertial forces, the motion governing 
the change in length will be practically that of a mass in subjected 
to a force increasing linearly with time. The velocity thus rose 
with the square and the change in length with the third power 
of time. The elongation in per cent, which was obtained during 
stretch, is given in fig. 21 by a scale above the abscissa.

If the change in length determined in this way is plotted 
against the corresponding values for tension, a dynamic length- 
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tension diagram is obtained, which is approximately linear during 
stretches < 7 per cent, and has an increasing differential 
quotient at larger stretches (fig. 22). The first small variation 
in length (of about 0.3 per cent) caused a steep increase in 
tension. The gradient then changed suddenly. It is not possible 
to decide whether this sudden change is an expression of a 
yielding in the substance or is caused by the propagation of the 
wave of tension over the fibre, since the time elapsed for this 
sudden change to occur would lit both explanations.

The difference of the dynamic length-tension diagram ob
tained by sudden changes in length from that which was found at 
sudden changes in load, is caused by the lower initial velocity and 
the higher final velocity which are used during sudden stretches. 
The difference demonstrates how the shape of the length-tension 
diagram is affected by the velocity with which the stretch proceeds.

If the sudden stretch was increased from 7 to 13 per cent 
of Lo, the extra tension increased 15 per cent at moderate 
degrees of stretch (L = 135). At larger initial length (L = 170) 
the increase amounted to 50 per cent. The increase in tension 
caused by the elongation thus increased less than proportionally 
to the elongation, although the reverse would be expected 
according to the generally assumed length-tension diagram. It 
must, however, be considered that the length-tension diagrams 
obtained by an extension to 7 and 13 per cent did not coincide 
in the first part of the change of length, as would be expected. 
The previously mentioned change in slope occurred at a sudden 
elongation of 13 per cent at an earlier time and at a lower tension 
than in the curve for 7 per cent elongation, while the curves as 
a whole are similar. The different positions of the hump both 
in time, tension, and length in spite of the same initial tension 
and stiffness indicate a yielding in the substance. Furthermore, 
it is remarkable that the slope of the length-tension diagram 
despite the same initial length and load was steeper when the 
variation in length was 7 per cent, than when it was 13 per cent. 
This variation of the tension with the amount of stretch is an 
expression of the previously described thixotropy. The curves in 
fig. 22 represent a mean value for 4—5 repeated elongations 
taken at 20 sec. intervals. With the larger, repeated deformation 
(13 per cent) the thixotropy of the fibre will exert its influence 
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to a higher extent than at 7 per cent deformation. The fibre is, 
therefore, more compliant at a high extension. This effect was 
most pronounced at a short initial length and was also observed in 
the previously described experiments with sudden changes in load.

When the same rapid change in length acted on the fibre 
from different initial lengths, the resulting extra tension rose with 
increasing initial length. At a sudden increase in length of 13 
per cent at 0° C. and length 130 a rise in tension was obtained, 
which exceeded the rise in tension observed in a transient from 
equilibrium length by 30 per cent; at length 170 an increase 
was found which exceeded the rise in tension, found at equili
brium length by 100 per cent. The increase in tension gives 
information about the elastic properties of the fibre, i. e. its 
stiffness, during relatively large and non-periodic changes in length.

Table 3 gives the stiffness after an isometric transient, 1 to 
100 msec, after the change in length and at an elongation of 7 
and 13 per cent of the equilibrium length. The stillness increased 
with the load and decreased with the size of the variation in length 
and with the time which had elapsed after the change in length.

The figures in brackets are extrapolated.

Table 3.
Stillness in the isometric transients in P0L^~l.

Time after 
change in 
length in 

msec.

Change in 
length as per-

Initial load in units of Po 0 0.025 0.045 0.200
centage of 
equilibrium 

length
Initial length in units

of Lo = 100........ 100 125 135 170

1 7 7.9 12.0
1 13 4.8 10.0

20 13 1,6 3.3 4.3 6.2
100 13 1.3 3.0 .. 5.8

10.000 13 (0.7) (2.3) (5.1)

In order to compare the values of stillness found by the 
different procedures, it is convenient to express the stiffness per 
unit tension (Table 4) in the following way:

(24)
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I lie stillness (G) is defined as —— and measured in units of 
/I L

n r —i n i x initial P + final P , „1 oAj > I m denotes -----, and Pst denotes the stiffness

tension (see p. 84). The advantage of introducing this rela
tive stiffness is that its value is practically independent of the 
load. It appears from 'fable 4 that the stillness referred to 
the same load, shows good agreement in the isometric and 
isotonic transient experiments. In both cases the relative stillness 
decreased with increasing amplitude and increasing time of 
adjustment. The values of stillness from isotonic transient given 
in fable 1 represent mean values from experiments of the same 
type as given in Table 4. In each experiment the stillness was 
obtained as a mean from quick loading and unloading. When 
comparing the values of stiffness in the two tables it should be 
remembered that stiffness in Table 1 is given as a function of the 
initial tension. In fable 4 the stillness is referred to the mean 
tension as defined above. Since the course of the variation in 
length with time is approximately symmetric in transient loading 
and unloading, the mean tension represents a reasonable para
meter for reference when stillnesses are compared which are 
obtained under different conditions.

stillness ....1 he----- ;----measured in vibration experiments, at a maximaltension
amplitude of 2 per cent Lo (peak to peak), is larger than the 
corresponding value obtained from isotonic transients, but less 
than the values found in isometric transient experiments at 7 
per cent change in length. Considering that individual variations 
must occur in these 3 different series of investigations, it appears 
justifiable to conclude that the relative stillness at the same load, 
the same amplitude of change in length, and the same velocity 
does not display significant differences in isometric transient, 
isotonic transient, and vibration experiments, 'fable 4 further
more shows that the relative value of the dynamic stillness is 
3—4 times higher than the static stiffness, which was measured 
from the gradient of the length-tension diagram with a recording 
time of 30 minutes (15 minutes rising and 15 minutes falling 
tension). If this time interval is extended, still lower values are 
obtained for the static stiffness. At load zero the static modulus
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of elasticity at 0° C. is 0.5—0.6x10® dynes x cm 2. The cause 
of the difference in stillness al different times of adjustment will 
be further discussed in connection with the spectra of retardation 
times (p. 74, 105).

Temperature dependence.

The additional tension (zl P) produced by a sudden increase 
in length varied with the temperature. At equilibrium length A P 
decreased 40 per cent, when the temperature rose from 0° to 
20 C. At an initial length 130, the additional tension decreased by 
15 per cent with a rise in the temperature of 20° C., and at lengths 
of about 170 the variation in additional tension caused by the 
temperature was within the limits of experimental accuracy. The

Table 4.
stiffnessRelative stiffness expressed as

mean tension1 + stiffness-tension2 
in units of Z,71(0°C).

1 mean tension — -
2 stiffness-tension = 0.05 Po.
3 extrapolated.
4 average of 25 experiments on 25 fibres measured in vibration experiments. Fre

quency 50 c.p.s. corresponding to 10 msec, after transient loading. Amplitude of vibra
tion, peak to peak, 2 per cent.

3 from gradients of the length-tension diagram, recording time 30 minutes.

initial P + final P

Change in 
length in 

°/0 of equi
librium 
length

Time in msec, 
length

after change in
or load

1 10 20 100 10000 10«

Relative stiffness 
from isotonic 
transient

2
5
8

14.7
13.7
12.5

<3.9

Relative stiffness 
from isometric 
transient

7

12

22.8

12.5 11.5 10.8 (10.0)3

Relative stiffness4 
from vibration 
experiments

2 18—20

Relative stiffness8, 
static

4.1
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same dependence on temperature was found for the stillness 
determined in vibration experiments.

On the other hand, a comparison of the influence of tem
perature on the tension obtained in static and dynamic ex
periments showed considerable difference. In static experiments 
(p. 42), the tension increased according to the degree of stretch 
between 0 and 0.15 per cent per degree C. of increasing tem
perature (static stiffness practically unchanged). However, the 
alternating tension for a given vibrational amplitude decreased 
with increasing temperature, the variation being leu limes 
higher than that of the static stiffness. In both cases the de
pendence on temperature is small at high degrees of stretch. 
The difference between the temperature dependence found in 
static and dynamic experiments is not surprising, since the former 
is determined by forces which are in equilibrium, while in 
dynamic experiments it is determined predominantly by the 
forces which cause the rearrangement of the structure, i. e. the 
forces which cause a deformation velocity.

Quick release.
A sudden decrease in length caused a reduced tension in the 

fibre. If the decrease in length was <1.5 per cent of the equili
brium length, a course of tension was obtained at release of the 
same type as during extension, but which in agreement with the 
non-linear course of the length-tension diagram, had a smaller

Table 5.
Isometric transient

length temp.
°C in °/o 

of L„

i „dPlPo108 dl
at 10 msec. at 32 msec. at 100 msec.

Increase in tension in units of Po at

0 msec. 1 msec. 10 msec. 32 msec. 100 msec.

100 0 12 2.82 2.20 1.70 0.550 0.31 0.21 0.18 0.15
100 25 12 2.40 1.76 1.40 0.330 0.19 0.12 0.10 0.10

125 0 12 2.96 1.45 1.65 0.74 0.50 0.41 0.38 0.36
125 25 12 2.70 1.04 1.65 0.60 0.36 0.27 0.25 0.22

170 0 12 2.70 2.31 1.96 1.00 0.82 0.75 0.72 0.70
170 25 12 2.58 2.23 2.00 1.11 0.89 0.82 0.79 0.75

Velocity of change in tension in arbitrary units.
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amplitude. If the decrease in length exceeded 1.5 to 2 per cent of Lo, 
zero tension was reached, and the fibre began to display a positive 
tension only after 20 to 50 msec, had elapsed after the moment 
of quick release. Obviously, when the amplitude of release ex
ceeded a value which caused the tension to decrease to zero, 
the curves obtained were not suitable for an analysis of the 
course of tension.

b. Course of stress-relaxation within 100 msec, after length alteration.
Just as the length increased with time on a sudden increase 

in load, the tension decreased with time after a sudden increase 
in length. This variation proceeded rapidly immediately after 
the change in length (p. 56), and then with decreasing velo
city. If the tension is plotted as a function of the logarithm 
of time, an approximately rectilinear course is obtained 1 msec, 
after the end of the stretch corresponding to the equation:

P(t) = P(l)-Cplog/, (25)

where P(l) represents the tension at time 1 (see fig. 23 and 
Table 5).

The increase in tension at low and moderate degrees of 
stretch was higher at 0° C. than at 20° C. At high degrees of stretch, 
however, the increase in tension was highest at 20° C.

The temperature dependence of the course of stress-relaxation is

Fig. 23. Adjustment of tension after a quick increase in length (isometric transient). 
Itesting fibre, 0° and 20° C. Increase in length 13 per cent of Lo. The figures on 

the curves denote temperature in ° C. and initial length in per cent of Lo. 
ordinate: increase in tension in units of Po. 
abscissa: time after increase in length in msec.
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seen from the values of the velocity of change in tension in 
Tableó. At length 100 an increase in temperature of 25° C. caused 
a decrease in stress-relaxation velocity of 33 per cent (measured 
32 msec, after quick stretch). In whole muscle using quick stretches 
of the same order of magnitude as those applied here, Hill 
(1950) did not lind any measurable variation of the course of 
stress-relaxation with temperature.

The formulas deduced for creep and stress-relaxation in iso
tonic and isometric transient indicate that the adjustment to a new 
state proceeds with about the same velocity, independent of 
whether the experiments are carried out at constant length or 
at constant tension.

The ratio between the increase in tension and in elongation 
(stillness) is, as previously stated, identical after about 20 msec, 
in the experiments performed under isotonic and under isometric 
conditions (Table 4). At equilibrium length and at moderate 
degrees of stretch, the stillness observed in both isotonic and 
isometric transients decreased with rising temperature (30—35 
per cent per 20° C.). Creep and relaxation velocity had a similar 
temperature coefficient as well, the velocity of the change in 
length or tension after a transient decreasing approximately 30 
per cent, when the temperature was increased from 0° to 25° C.

The transient experiments enable us to evaluate the type of 
the hysteresis occurring during the recording of the length-tension 
diagrams. This hysteresis was present regardless of whether the 
diagrams were recorded with rapid or very slow variations in 
length. The difference which was found at the same tension 
during extension and release, would vanish if the load was kept 
constant for one hour. This is seen from the experiments in 
which the length-tension diagrams were recorded with stepwise 
variation in tension. The length was recorded as a function of 
time at each level of tension for about 8 minutes, the first measure
ment being taken 10 sec. after the change in tension, thus cor
responding to a time range of 1.7 decades. An extrapolation in 
time to 1 hour corresponded to 0.9 decades and appeared to 
be permissible on the basis of the relation between length
tension and time found in the creep and relaxation experiments. 
These experiments show that the hysteresis found in the static 
length-tension diagrams, including the very first extension 
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(fig. 12) is not due to plasticity, but to the delayed elasticity 
which manifested itself by the fact that over a wide range of 
lime the fibre adjusts itself to variations in length and tension, 
approximately linearly with the logarithm of time. Only at 
extreme loads (> 0.5 Po or length 170) did the fibre show irre
versible changes in length, which, when repeated length
tension diagrams were recorded, amounted to 4 per cent per 
length-tension diagram (recording-lime 15 min. each, maximum 
tension = 7-* 0). The apparently plastic phase (thixotropy), which 
was found during the rapid change in length, cannot be seen 
in the static length-tension diagram.

To summarize, it can be concluded from the transient ex
periments that the mechanical properties of the fibre during the 
rapid phase of stretch indicate the presence of thixotropy, which 
appears partly as plasticity during elongation, and partly as 
decreasing stiffness during repeated stretches (fig. 18). This effect 
was most pronounced at low loads. The transient experiments 
showed furthermore that the length or tension adjust themselves 
approximately linearly with the logarithm of time. In isotonic 
experiments the change in length at rest was practically linear 
over a range from 20 to 10 000 msec., and in isometric experiments 
the change in tension was linear from 1 msec, up to at least 
100 msec. Experiments with constant length thus give information 
about a time interval alter transient, which escaped measurement 
in the isotonic experiments. Although in the present experiments 
only changes in length which occurred within 100 msec, were 
included, the linear relation with the logarithm of time extended 
over a considerably longer range of time.

Equivalent models for the description of transients.
The visco-clastic properties of the cross striated muscle fibre 

can be described in terms of a mechanical model. The first 
attempt to treat the experimental observations from whole muscle 
in this way was made by Gasser and Hill (1924), who described 
the results from quick stretch and release experiments by a model 
consisting of an elasticity in series with a viscosity (Maxwell- 
element). Levin and Wyman (1927) applying stretch and release 
with constant velocity demonstrated that this equivalent model 

Dan. Biol.Medd. 21, no.7. 5 
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was unsuitable and suggested a system composed of three 
elements, a pure elasticity in series with a damped elasticity. 
The latter consists of a pure elasticity in parallel with a viscosity 
(VoiGT-element). However, this simple analogue cannot adequately 
describe the mechanical reaction of the isolated muscle fibre in 
the transient experiments. Therefore, it was necessary to develop 
a more complicated model1 of the same type as used in high 
polymer physics. There are a number of different possibilities 
available for the description of the visco-elastic behaviour, but 
as pointed out by Alfrey and Doty (1947) they arc all mathe
matically equivalent.

1 Jordan (1939) has suggested a complex mechanical system for the de
scription of plastic properties of smooth muscle.

An isotonic transient applied to a visco-elastic material is most 
conveniently described in terms of the Voigt-model, while an 
isometric transient is described most easily by the Maxwell
model (Alfrey, 1948). However, Kuhn et al. (1947 a, 1947b) have 
applied the Maxwell-model for the description of the effect of 
isotonic transients in caoutchouc. Gross (1947, 1948) has derived 
the general transformation formulas connecting these two models.

The Voigt-model.
A Voigt-model consists of Voigt-elemcnts (retarded elasticities), 

which are coupled in series. This series can contain an element 
which has “degenerated” to a pure elasticity (fig. 24). The single 

1
Voigt-elemcnt is characterized by a modulus ol elasticity and 

J i
a retardation time Tf. The reaction of the Voigt-elemcnt to a 
change in load cr(t) is determined by the equation of motion:

1 1 dy.
j/‘+jtT‘-dF = a^’ (26)

where y¡ (t) is the deformation.
The response of the element to a sudden change in load 

a therefore is:
I I

y.(t) = (TjJl — e T,J. (27)
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A discrete series of Voigt-elements, which contains a pure
1

elasticity y reacts
•'o

to a sudden constant change in load according

to the expression:

/(/) = a

A continuous distribution of Voigt-elements plus a
1

pure elasticity y reacts according to the expression: 
•'o

where J (r) is the distribution function for the re
tardation times. The final elongation becomes:

I
i
I

(28)

Equation (30) expresses the linear relationship 
between static length and tension in the Voigt-model. 
The static length-tension diagram of the muscle 
fibre is approximately exponential, and this non
linearity will cause variations in the Voigt-model 
used here dependent upon the initial and the final 
state of length and tension. Thus, unless the defor
mation is small, Jo and J (r) will depend on both 
the initial and the final state of the fibre. This

i

I 
i 
i

Fig. 24.
Voigt-model 

(Kelvin 
model) 

see text.
behaviour is illustrated in a later section which
deals with the application of Voigt-models to the effect of iso
tonic transients (p. 72).

The Maxwell-model.
A Maxwell-model consists of Maxwell-elements (an elasticity 

in series with a viscosity) which arc coupled in parallel. One of 
these elements can “degenerate” so that it consists only of an 

5*  
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elasticity (fig. 25). This will prevent the model from flowing in
finitely under an external load.

The single Maxwell-element is characterized by a modulus 
of elasticity G¡ and a relaxation time rf. The response of 
the Maxwell-element to a change in length y (/) is determined 
by the equation of motion:

1 dor,.
Ti + Gi dt

dy
dl ’ (31)

where a,- (/) is the tension.

The response of the element to a sudden change in length 
y is therefore:

 t
= G¡ye r‘. (32)

This expresses the stress-relaxation. Hence, for a discrete set of 
parallel coupled Maxwell-elements containing a pure elasticity Go 
the stress-relaxation after a sudden change in length will be:

<r(/) = y(g0 +¿’G.e T,j. (33)

For a continuous set of Maxwell-elements we shall obtain:
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(34)

where G (r) is the distribution function for the relaxation times 
(non-normalized).

Transformation from Voigt-model to Maxwell-mo  del.
Gross (1947, 1948) has derived the transformation-formulas 

connecting Jo and J (r) in the Voigt-model with Go and G (r) 
in the Maxwell-model. These are in our terminology:

Application of a Voigt-model to the transient experiments.
When applying the Voigt-model and the Maxwell-model to the 

muscle fibre the purpose is to determine their parameters in 
such a way that the theoretical y (/) and or (t) from isotonic and 
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isometric transients agree as well as possible with the experimental 
findings.

In practice the changes in load or in length do not take place 
suddenly but occur within a certain time interval. This causes 
the initial course of creep and relaxation to be slightly different 
from those corresponding to ideal transients, but can be taken 
into account by correcting for the way in which the changes in 
load and length occur experimentally.

A. Isotonic transient.

In a scries of experiments in which the change in load always 

was + 3 or —-- times the initial load, creep curves (fig. 20 and 
4

Table 2) were recorded at rest and during tetanic contraction. 
As already mentioned these curves were characterized by an 

approximate linearity with log t. This gives a possibility for 
obtaining an approximate expression for the distribution function 
J (r) defined in (29).

From (29) we obtain :

dy T t
= <r \ J (f) • - e ' d t ; 

♦Jo
(39)

d log t
putting

J(r) - ~T (40)

(39) gives
dy' -- (T Í* (41)d\ogt

e. the elongation is linear with log t.
The expression (40) for the distribution function has, however, 

like all expressions giving a linearity with log t, the property that 
the final elongation yx becomes infinite

(42)

(40) can, however, easily be modified to give both a practically 
linear course with log t over a suitably long lime interval, and 
a finite final elongation. The following expression can be chosen:
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11

J(r) = •
c
— for

0 for t < and r > r2
(43)

in which it is assumed that

?»1.
Ti

(44)

With this expression (39) gives

c Ti (45)

From this it can be seen

(46)

z(0 = Zo + (z„ Zo) (47)9

where Ei denotes the integral logarithm, and

?! « t « r2

(

log I.
By substituting (43) in (29) the following expression for 

y (/) is obtained:

e.g. the elongation varies practically linearly with

log|?
T1

and
y0 = a

y = o
1 oo Jo+c log

T1
(48)

denote the initial and the final elongation.
From the equations given above it must be expected that 

expression (43) for the distribution function J (r) and the cor
responding expression (47) deduced from it for the elongation 
y(/), will give a satisfactory approximation to the experimental 
course of elongation.
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The spectrum of retardation times.

We shall now determine tx and t2 for the different experimental 
curves and then compare the spectrum of retardation times (i. e. 
the distribution functions) for transient at rest at 0° C., for transient at 
rest at 25° C., and for transient during tetanic contraction at 0° C.

It is assumed that the elongation y0 = a-J0 caused by the 
series elasticity Jo is only very small (comp, vibration experi
ments). In the s we shall assume
amounts to 5 per cent of the final elongation yx :

that y0

7o = 0.05y„. (49)

Substituting (49) in (47), rx and r2 are then determined for the 
different courses of elongation in such a way that the theoretical 
elongation given by (47) is the same at I = 20 msec, and t = 1 
sec. as the experimentally determined elongation. The results of 
these calculations are collected in Table 6.

Table 6.
Boundary values for the spectrum of retardation limes.

J P
l‘o

Tj msec. i2 msec.

Rest 0° C............................................. 0—0.2 0.1 10s
0.4—0.5 0.01 3x 101

Rest 25° C........................................... 0—0.2 0.014 3 X 104
0.5 10 10*

Contraction 0° C ................................ 0.1—0.2 10 2000
0.4 3 2000

The table shows a distinct difference in the spectrum of 
retardation times under the three different conditions. In fig. 26 
L (logr), which is defined from the normalized distribution 

J (?)
function j (r) = --------- as:

\ J (r) dr
•'o

L (log r) d log t = j (t) dr,

i. e. L (log t) = t-j(t) (50) 

is given as a function of log r.
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From Table 6 and diagram fig. 26 it can be seen that the 
distribution function at 25° C. includes contributions from 
retardation times shorter than those found at ()u C. Differences 
in the contributions from long retardation limes could not be 
demonstrated with our technique. Contraction, which was only 
investigated at 0° C., showed a reduction in the contribution 
from both short and long retardation times. Table 6 further-

Kj

u
<3

contraction O°C

restinq
Fibre 2i°C resting fibre. (FC.

/ \

*
••>

* ! \
X

-.5 ------

Fig. 26. Spectrum of retardation times.
ordinate: normalized distribution function of retardation times multiplied by the 

retardation time.
abscissa: retardation times in msec., logarithmic scale.
Note that the largest range of retardation times is present in the resting fibre at 
25° C. The range is narrowed and displaced to longer durations at 0° C. and nar
rowed further during contraction. The stippled lines indicate the correction to the 

distribution which must be expected around the boundaries of the spectrum.

more shows a variation in the distribution function with load 
(cf. p. 67), the relative contribution of short retardation times 
increasing with increasing load and variation in load AP.

Apart from these changes in the boundary values of the spectrum 
of retardation limes which were determined from the relative course 

of adjustment —alone, the constant c in the expression for
V00

the distribution function (43) also changes with the mechanical state 
of the libre. These changes are obtained from the absolute values 
of the deformation y (/) and given in the following table:

Table 7.
Constant c in units of LoxP^'

JP resting fibre contraction
in units of PQ. 0° G 25° C 0° G

0.11....................................................... 0.30 0.26 0.61
0.19....................................................... 0.18 0.18 0.47
0.39....................................................... 0.077 0.054 0.24
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Together with the variations in the width of the spectrum of 
retardation times, the variation of the constant c with variations 
in A P and also with the mean load (on account of the constant 
ratio between A P and initial load in the experiments in queslion) 
expresses the dependence of the stiffness of the fibre on the load. 
Moreover, the difference in cat various temperatures and with con
traction together with the accompanying changes in the width of the 
spectrum is an expression of the changes in stiffness with the state of 
the fibre. The proportionality found in experiments with isotonic 
transients between the maximal velocity of the induced changes 
in length and A P at constant mean loads (cp. p. 51) also 
indicates that the dependence of the model on load is mainly a 
dependence on the mean load. This is also to be expected from 
the static and dynamic length-tension diagrams.

It is assumed in the above calculations that the changes in load 
were sudden. In the experiments the changes in tension proceeded 
within a certain time and it can be assumed that the tension 
increased linearly within 2 msec. Calculations carried out to 
determine the effect of the linear increase of tension on the course of 
elongation showed that the distorting effect was negligible after 
about 5 msec. This distortion, therefore, cannot affect the curves 
used for the above calculations, since these refer to times > 20 msec.

Finally it might be emphasized that the application of a 
Voigt-model to a description of mechanical properties of the 
muscle fibre does not pretend to give a direct image of the minute 
structure, but seems to be a suitable way of illustrating with 
good approximation different and rather complex experimental 
findings. The structural basis of this equivalent model is re
presented by the general picture of minute structure as indicated 
on p. 42. Thus, it does not comprise quantitative assumptions with 
respect to the correlation between minute structural processes 
and their external manifestations as does e.g. the model conception 
developed for the visco-elastic behaviour of rubber by Tobolsky 
and Eyring (1943, sec also Part IV, p. 229 of this paper).

B. Isometric transient.

Fig. 23 shows the course of stress-relaxation at 0° C. and 20° C. 
after a sudden change in length from different initial lengths.
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The curves are approximately linear with log I for t > 1 msec., 
but the linearity is not as pronounced as is the case in isotonic 
creep. We shall now investigate how well the isometric curves 
agree with those to be expected from the Voigt-model (43) used 
for the description of the isotonic transients.

According to the Maxwell-model the decrease in tension a (t) 
after a sudden change in length is given by (34). The distribution 
function G (r) and the pure elasticity Go to be used here are ob
tained by inserting ,/0 and J (t) given by (43) in the transformation 
formulas (35) and (36):

1

Just as L (log r) = t-J(r) was convenient for the description

of the distribution of retardation times,

(52)

is convenient for the description of the distribution of relaxation 
times. Fig. 27 shows K (log t) with G (t) given in (51). For the

T’

ratio 2 the value 106 is applied (cf. Table 6). It is seen from 
Ti

fig. 27 that about half the relaxation times are < 10 Tlf i. e. 
according to Table 6 < 0.1—1 msec.
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The course of stress-relaxation corresponding to G (t) and Go 
given in (51) is very similar to the experimental, but the experiment
ally found ratios between the final and the initial increase in ten
sion are appreciably higher than those expected theoretically. This 
is due to the fact that the change in length is produced within a 
finite interval of time (about 1 msec.) during which an essential 
relaxation can take place.

In caoutchouc Kuhn et al. (1947 a) have described the course

Fig. 27. Distribution of relaxation times in the Maxwell-model, which is equivalent 
to the Voigt-model for the resting libre at 0° C., the distribution function of which 

is given in fig. 26.
ordinate: normalized distribution function multiplied by the relaxation time. 
abscissa: relaxation time in units of rv

of adjustment after an isotonic transient by means of a Maxwell
model. Over a long interval of time the elongation in this material 
varied linearly with log / (IO-2 sec. < t < IO4 sec.) (Brenschede 
1943). Assuming an initial elongation zero, Kuhn on this basis 
found a distribution function which in the terminology used in 
the present paper is:

G (t) = 0 for t < t0 . (54)

Transformation of this expression to
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shows by comparison with (35) and (51) that the Maxwell-model 
applied by Kl iin corresponds to a Voigt-model of the same type 
as that used here for the description of the mechanical properties of 
the muscle fibre. According to (51) and (55) the boundaries in 
Kuhn’s spectrum of retardation times are

Ti = t2 and t2 = oc- (^6)

Furthermore, according to (35), (51), and (55):

Jo = 0. (57)

The upper limit r2 = oo indicates that Kuhn’s model Hows 
ad infinitum.

2) Vibration experiments, resting and contracted fibre.

Transient experiments gave information about the transition 
from a dynamic to a static state by determining the velocity and 
degree of adjustment to a sudden change in length or tension. 
In this way the influence of the non-linear component on 
the total elastic reaction in the minute structure of the muscle 
fibre was studied. The procedure in these experiments, however, 
limited the range of measurements to processes which had a 
duration of more than 2 msec.

Further information about the mechanical properties of the 
fibre was obtained in vibration experiments.

These were previously performed by subjecting the fibre to 
a periodic change in length and measuring the change in tension 
produced (Buchthal and Kaiser, 1944). In experiments of this 
type it is important not to use too large an amplitude of vibration, 
since this may alter the mechanical reaction of the fibre during 
contraction. The effect of a periodic length amplitude of 2 per 
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cent (4 per cent peak to peak) on the tension developed during a 
single contraction can be seen in fig. 28, where it can be compared 
with the development of tension during a contraction without 
superposition of periodic vibrations. The mean tension with 
superimposed vibrations is only about 70 per cent of the mean 
tension in a twitch without vibrations. Curve II c shows how the 
fibre again approaches the original tension-time relation when

a b c

and condenser myograph.
curve 111: as II, but recorded with a. c. amplifier, (a) course of tension with and

(b) without superimposed vibrations. Note that the vibrations stop 
in (c) after the maximum in tension. Incurve II the upper contour of 
curve b for comparison is projected on curve c.

the vibrations are stopped during the contraction. At amplitudes of 
below 1 per cent, a decrease in the tension developed during 
contraction could no longer be observed.

In the present experiments a periodic alternating force acted 
on the fibre, and force and elongation were measured simul
taneously. Lissajous figures such as those described in Part I were 
hereby obtained. An analysis of such a figure enables the determin
ation of dynamic length-tension diagrams within a period of 
oscillation, which for the frequencies used was 10—30 msec.

Construction of dynamic length-tension diagrams. For a classi
cally damped system the Lissajous figures produced by simulta
neous values of force and amplitude are ellipses (comi), equations 
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(1) and (3) p. 17). However, the Lissajous figures obtained 
in vibration experiments, as fig. 7 shows, are not ideal 
ellipses, but more flattened in one half period than in the other. 
This deviation can be understood from the dynamic length
tension diagrams and the hysteresis which they show during

Fig. 29. Dynamic length-tension diagram from vibrational experiments. 0° C. 
ordinate: change in tension in dynes. 
abscissa: change in length in per cent of Lo.

The area described by the curve corresponds to the energy absorbed per oscillation 
period.

extension and release, and the Lissajous figures can be used to 
construct these length-tension diagrams. On account of the double 
differentiation of photographically recorded curves this can be 
only an approximate determination of the length-tension relation. 
However, the principal difference in the course of length pro
duced by increasing and decreasing tension will appear with 
sufficient significance.

The external force a = a0 cos a>t varies sinusoidally with a 
known frequency. This enables us to plot the time on the 
x-axis and then to find the variation in length with time. By
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differentiating twice, the acceleration of the movement (ÿ(/)) is 
obtained. Multiplication with the equivalent mass in finally gives 
the inertial force <r; (/). The force acting on the fibre is the 
difference between the external force and the inertial force:

<7/(0 = <r(/) —a,(/). (58)

This force was determined and the dynamic length-tension 
diagram was obtained by plotting the corresponding values 
for y (/) and Ci(t).

The dynamic length-tension diagram of the resonance ellipse 
in fig. 7 is seen in fig. 29. The marked difference between ex
tension and release is in agreement with the length-tension 
diagram recorded semi-dynamically (Buchthal, 1942) and the 
previously mentioned partial diagrams which were constructed 
on the basis of the isotonic transients. The slope of the length
tension diagram shows that the libre is considerably less compliant 
on extension than on release, and during the course of extension 
the characteristic decrease in gradient is present as in the partial 
diagrams (fig. 15).

Dynamic elastic and viscous stiffness.
The dynamic elastic stiffness was determined by means of the 

resonance frequency arising from the elasticity of the fibre plus 
the mass of the system (cf. p. 18). The viscous stiffness was 
determined by the ratio between the alternating force acting on 
the fibre plus the recording system and the resulting maximal 
amplitude of vibrations. In the evaluation of the results obtained 
by this procedure it is necessary to examine to what extent re
sonance frequency and damping are unique standards, suitable 
for a complete characterization of elastic properties. In order to 
be able to define changes in the mechanical properties of the 
fibre, produced, e. g. by tension or temperature, it is necessary 
that the resulting changes in stiffness and viscosity are large 
compared with the change in these quantities which might result 
because of the necessary change in measuring frequency re
quired by the experimental technique, i. e. the adjustment to a 
new resonance frequency when the stiffness and viscosity para- 
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meters vary. For example during transition from rest to contrac
tion under isotonic conditions the resonance frequency at a given 
load rises from 40 to 56 vibrations per sec., with a corresponding 
increase in elastic stillness of 100 per cent. If the measuring fre
quency applied to the resting fibre was increased from 40 to 56

Fig. 30. Elastic stiffness (full lines) and viscous stiffness (stippled lines) in 
dynes x cm-1 as a function of load (1 P0XE¡fl = 2800 dynesXcm-l)- 

fibre at rest: thin lines.
contraction: thick lines.
The figures on the curves denote the vibrational amplitudes in per cent of the equili
brium length of the fibre (deflection measured from the mean position). 0° C. 

ordinate: elastic and viscous stillness in dynes xcm-1. 
abscissa: load in units of Po.

vibrations per second, an increase in stiffness of only 0 to 10 
per cent was found, so that at least 90 per cent of the increase in 
stillness observed during contraction must be considered an 
expression of a change in elastic stiffness due to the contracted 
state. Thus, the frequency dependence of the elastic stiffness in 
the range of frequencies examined can be considered to have 
a second order significance.

Dan. Biol. Medd. 21, no.7. 6
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Resting fibre.
The elastic stiffness increased in the fibre at rest approximately 

linearly with the load (fig. 30). At a load of 0.3 PQ and an amplitude 
of the periodic changes in load corresponding to a length amplitude 
of 1 per cent of the equilibrium length (= 2 per cent peak to peak), 
the ratio between stillness and load in C. G. S. referred to an equili
brium length of 1 cm at 0° C. amounted to a mean value of 18—20.

tension
figures on the curve denote the load in dynes (Po = 650 dynes). 0° G. 

stiffness ...ordinate:----- ----  in arbitrary units.tension

stillnessFig. 31.---------- ;------- - in the resting fibre as a function of time in minutes. The

abscissa: time in minutes after start of experiment.

This value was independent of the cross section of the fibre 
within wide limits, the cross section in the present material 
varying between 0.05 and 0.5 mm in diameter, according to 
whether single fibres or small bundles of fibres had been ex
amined. The results of these experiments, in which the load was 
varied and the change in stiffness measured, agree with the 
stiffness-tension relationship found in previous experiments, in 
which the changes in tension produced by periodic changes in 
length were used as a measure of stiffness (Buchthal 1942, 
Buchthal and Kaiser 1944). The variation of stiffness with 
load makes it an advantage to work at constant load when esti
mating changes in elasticity produced by factors other than the 
tension. When measuring at constant length, the tension varying 
with time will cause a concomitant change in stillness. However, 
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even if measured at a constant load, the alterations in the texture 
of the libre will bring about a variation in the stiffness with lime 
when the fibre is exposed to different loads over a long time 
interval.. This is illustrated in fig. 31 by experiments in which 
stiffness and tension in the resting fibre at constant temperature 
(0° C.) were measured at changing levels of load during an 
interval of more than 1 hour. It appears that — *! ess as a func_ 

tension
tion of time at low loads (20—60 dynes) falls with increasing 
duration of the experiment and rises when the load is above 
200 dynes (about 0.3 Po). Before the actual experiment was started, 
the fibre was, therefore, subjected to a relatively high load (0.8 Po) 
for a few minutes in order to reach a preorientation in the minute 
structure more quickly, the development of which must be 
presumed to be the cause of the variation in stillness described. 
In order to check further for the influence of the time factor, 
the load was changed in steps up to maximum, and then de
creased by corresponding steps.

The viscous stiffness also increased with a rise in load, but not 
linearly as did the elastic stillness (fig. 30). In the evaluation of 
these curves it must, however, be considered that the increase 
in resonance frequency as a result of the rising load was accom
panied by an increase in viscous stiffness, which is discussed in 
detail on p. 91. In the examples shown in fig. 30, which re
presents a mean curve for a series of 10 experiments, the viscous 
stillness is of the same order of magnitude as the elastic. How
ever, other experimental series, which were carried out under the 
same conditions, but at different limes of the year showed remark
able uniformity for a given set of measurements, but a consider
able variation in the ratio of viscous to elastic stillness between 
the different groups. In a later section an attempt is made to cor
relate these variations with other properties of the fibre.

When viscous stiffness is expressed in terms of viscosity, the 
basic initial viscosity at equilibrium length of the fibre amounted 
to approximately 5xl05 centipoise in the range of frequencies 
applied in the present experiments (25—150 c.p.s.). The viscosity 
of the structural elements exceeded that of the protoplasm of the 
fibre (29 centipoise) by 104. The latter was determined by 
measuring the migration velocity of an oil drop introduced into 

6*  
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the muscle fibre (Rieser 1949). Thus at the most, 0.01 per cent 
of the viscous stiffness may be caused by the sarcoplasm.

Dynamic stiffness as compared with static stiffness.
The dynamic stillness of the muscle fibre always exceeded 

the static stiffness (Buchthal 1942). With the vibrational fre
quencies employed in the present investigation the ratio ^dyn:G'slat 
at the same load in different fibres varied between 3:1 and 5:1.
With increasing load the ratio decreased slightly. As mentioned 
above, both static and dynamic stiffness increased linearly with 
load, the slope of the stiffness-tension diagram being three times 
steeper in dynamic than in static experiments. As the dynamic 
stillness at tension zero exceeded the static 5 times, the ratio 
between the stiffness-tension1 in dynamic and static experiments
is I = 1.7. The dynamic elasticity modulus amounted with the

resting fibre at equilibrium length at 0 C. to 2.5X108 dynes 
per cm2. The vibrational amplitude applied was 1 per cent of Lo 
and the frequency approximately 30 c.p.s.

The dependence of stiffness on the amplitude of vibration.
In addition to the load, there is a factor affecting the elastic 

and viscous stiffness which so far has not been considered. As 
long as an elastic body follows Hooke’s law, the variations in 

. IA tension 
length and tension are proportional I 

a variation in the amplitude of the periodic changes in load used 
for stiffness measurements does not affect the result. In a 
body with a non-linear length-tension diagram, the stillness 
will vary with the amplitude of the changes in load. From the 
dynamic length-tension diagram determined from the ratio be
tween stillness and tension, variations in stiffness of less than 1 
per cent could be expected for the amplitudes of load used in 
the present experiments. A more detailed discussion of the in
fluence of the exponential dynamic length-tension diagram on

1 StilTness-tension denotes the distance on the tension axis obtained by ex
trapolation of the stiffness-tension diagram to zero stiffness.

constant , i. e.



Nr. 7 85

the dependence of stiffness on amplitude is found on p. 292. 
The experimentally found dependence of the stiffness on am
plitude was, however, considerably larger than would have been 
expected on the basis of the non-linearity of the length-tension

Fig. 32. Three Lissajous figures showing the relation between alternating force 
and alternating length at the same mean load and vibrational frequency, but three 

different alternating loads. 0° C.
ordinate: vibrational length amplitude in ft, measured as deflection from the mean 

position.
abscissa: applied alternating force in dynes.
The position of the intermediate ellipse indicates resonance, the smallest ellipse, 
corresponding to a decrease in amplitude, indicates an increase in stillness and the 

largest ellipse (increase in amplitude) corresponds to a lower stiffness.
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diagram. In the first experiments this deviation was assumed to 
be due to the recording system. In these experiments the electro
magnetic coil was supported by pivots in which the frictional 
forces cotdd vary with the amplitude of vibrations. Therefore, 
this recording device was replaced by a system with a knife
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edge suspension, and control experiments in which the muscle 
fibre was replaced by a very thin steel spring showed no measur
able variation in resonance frequency with variation in vibrational 
amplitude within the range of frequency and amplitude used in 
the present experiments (of. p. 23). Even when this system was 
used in which a lack of linearity due to possible play in the 
bearings of the recording system was eliminated, the muscle 
fibre showed a considerable variation of stillness with the size

Fig. 33. Resonance frequency as a function of the alternating length amplitude. The 
figures on the curves denote the mean load in dynes (Po = 800 dynes). 0° C. 

ordinate: resonance frequency in c.p.s.
abscissa: length amplitude in per cent of Lo (peak to peak).

of the amplitude of vibrations. Fig. 32 shows 3 Lissajous figures 
which represent the correlation between alternating load and 
alternating amplitude for a fibre at different alternating loads 
(same measuring frequency and same initial load). The axes of 
the curve in the middle are parallel to the axes of the oscilloscope 
screen and indicate the presence of resonance at the frequency 
and amplitude in question. The deviation of the axes of the 
smallest ellipse (sloping to the left) and the largest ellipse (sloping 
to the right) shows that the resonance frequency of these ellipses 
was displaced to a higher and a lower value respectively. An 
example of the variation in the resonance frequency and hence 
of the elastic stillness with the amplitude of vibrations is given 
in fig. 33. The logarithm of the resonance frequency varies linearly 
with the logarithm of the vibrational amplitude in such a way 
that the stiffness falls with increasing amplitude. This fall was 
relatively more pronounced the lower the load. Even a doubling 
of an amplitude of only 0.1 per cent of the equilibrium length 
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caused recognizable changes in stillness. In the example shown 
in fig. 33, the decrease in stillness was 20 per cent at a load of 
150 dynes and a variation in amplitude from 0.15 to 0.30 per cent 
of Åo. The dependence on amplitude of the elastic stillness at 
different loads can be seen in fig. 34. Independent of the load

0 02 0.9 0 02 09 0 0.2 09 . 0 0.2 0.9
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Fig. 34. Dynamic stiffnesses as a function of the alternating length amplitude at 

0° and 24° C.
a) elastic stiffness, dynes X cm-1 (1 2000 dynes X cm-b-
b) viscous stiffness, dynes x cm-1 (1 7->0X/-^'L — 2000 dynes x cm-1). 
stippled lines: experiments with 16 times increased equivalent mass. 
abscissa: alternating length amplitude in per cent of Lo, deflection measured from

the mean position.
ordinate: clastic and viscous stiffness in dynes X cm .

the absolute changes in stiffness are approximately of the same 
order of magnitude. This indicates that the relative variation of 
stiffness with amplitude decreased with increasing stiffness, and, on 
account of the stillness-load relationship, also with increasing load.

For all the muscle libres investigated, the influence of the 

vibrational amplitude, expressed by stíflj* ess) as a function
11 J d(log amplitude)

of the load is shown in fig. 35. At a load of 0—0.1 7% the variation 
with amplitude was at maximum and decreased rapidly with in
creasing load. At 0.8 7% it amounted to only one fourth of the 
maximum.
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In rubber we have found an amplitude dependence which 
was less than in the muscle fibre. In the unloaded state

(/(log stillness)
(/(log amplitude)

undervulcanized rubber was 0.20 and in

vulcanized rubber 0.14. At a load which produced an orientation
corresponding to that of the muscle fibre at equilibrium length

fibre and during isotonic tetanic contraction. 
d (log stiffnessordinate: —--------- —.d (log amplitude) 

abscissa: load in units of Po.
0° C., mean curve of all experiments.

(L = 300 in rubber) the quotient decreased to one tenth of its 
value in the unloaded state.

77ie variation in viscous stiffness with a variation in vibrational 
amplitude had a course differing from that of the elastic stiff
ness, and showed a maximum in the amplitude range 0.1 to 0.4 
per cent of Lo (fig. 34 b).

As previously mentioned, the ratio of viscous to elastic stillness 
(sr) varied in different experiments. The varying ratio could not 
be related to variations in the elastic stiffness measured per unit 
of load, since this value showed only slight variations in the 
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different series of experiments. A relation to the size of the am
plitude dependence was, however, found. Different experimental 
series referred to the same load (0.3 /%) showed that the viscous 
stiffness was higher in the presence of a large amplitude depen
dence than when the amplitude dependence was small (fig. 36).

In order to obtain a quantitative expression of the interaction

Fig. 36. Amplitude dependence of elastic stiffness plotted versus sr
viscous stiffness 
elastic stiffness

d (log stiffness)ordinale: ------------ ---------.d (log amplitude)
, . viscous stiffness 

abscissa:------------ -,--------- .elastic stiffness

of the viscous and elastic forces, the viscous stillness is plotted 
versus the elastic (fig. 37). A variation in the amplitude from 
0.1 to 1 per cent of Lo at the different loads produced a parabolic 
curve with the axis of symmetry parallel to the axis of the viscous 
stiffness. On increasing the load from 0.1 to 0.8 Po both elastic 
and viscous stiffness increased. The elastic stillness decreased 
with increasing amplitude, which is indicated in the curves by 
the direction of the arrow. The maximum in these curves is 
caused by the changes in viscous stiffness with vibrational 
amplitude.

Both increasing vibrational amplitude and increasing fre



90 Nr. 7

quency caused a rise in the velocity of length variations. The 
maximal deformation velocity which was attained within a period 
of vibration is denoted as velocity amplitude (<o0xy0). In the 
example shown in fig. 33 illustrating the amplitude dependence 
of the elastic stillness, the velocity amplitude varied between 
0.25 and 6.0 Lo per second.

Fig. 37. Viscous stiffness plotted versus elastic stiffness. The figures on the curves 
denote the different levels of load in Po.

Thin lines: resting fibre; thick lines: tetanically contracted fibre. The connected 
points denote in the direction of the arrow amplitudes of 0.1, 0.2, 0.5, 1.0 and 
during contraction also 2.0 per cent of Lo, deflection measured from the mean 

position. 0° C.
ordinate: viscous stiffness in dynes X cm-1 (1 PqX^o-1 = 3500 dynes X cm-1). 
abscissa: elastic stiffness in dynesxcm“ 1 (1 t>„Xt-^~l ■- 3500 dynesXcm l).

The total stiffness of the libre (its “mechanical impedance’’), 
defined as the Pythagorean sum of elastic and viscous stillness 
(|/ ^elast + Gyisc), had a maximum at a low amplitude in the range 
of 0.2—0.4 per cent of Lo. In a special series of experiments, in 
which the fibre was subjected to forced changes in length with con
stant mean length (corresponding to former “isometric” experi
ments, Buchthal and Kaiser 1944), a similar decrease was found 
in the total stillness with increasing amplitude. The range of am
plitudes examined in these experiments was 0.5—2 per cent of Lo.
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In the introduction to the present section it has been pointed 
out that the frequency of vibration may influence the results of the 
measurements. In order to investigate this effect further, a series of 
experiments was performed in which the equivalent mass of the 
recording system was increased by the introduction of an ad
ditional mass. This caused a reduction in the resonance frequency

Fig. 38. Elastic (----------------- ) and viscous (---------------) stiffness as a function
of load without (• x) and with (O+) 15 times additional equivalent mass. 
Vibrational amplitude 0.50 per cent of Lo, deflection measured from the mean 

position. 0° C.
ordinate: stilTnes in dynesXcm-1 (1 P0XP^1 = 2000 dynesxcm-1). 
abscissa: load in units of Po.

to approximately one fourth. The mean curve for these ex
periments showed that the elastic stiffness at a vibrational am
plitude of 1 per cent of Lo was not affected measurably (fig. 38). 
The viscous stiffness, however, decreased 16 per cent on the 
average, when the frequency was halved. This indicates that 
part of the increase in viscous stillness, apparently caused by 
the load, is due to the change in resonance frequency. The 
total stillness decreased approximately 5 per cent at load 
ca. 0.5 Po, when the frequency of the vibrations was halved 
in the frequency range of 100 to 25 c.p.s. This frequency de
pendence corresponds to the variations in the stillness found
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when it was measured at different times after a sudden change 
in length or load. A doubling of the time interval, elapsing after 
the change in load gave an increase in “softness” of 4 to 5 per 
cent (Table 4, isotonic transient). Thus, agreement can be ex
pected between the distribution function for retardation times, 
calculated on the basis of transient experiments (fig. 26, p. 73) 
and the small dependence on frequency found when the stiffness 
was measured in vibration experiments.

A variation in the measuring frequency also caused a variation 
in the size of the amplitude dependence (fig. 34). The elastic 
component of the stillness showed a larger decrease with in
creasing amplitude of vibrations at low frequency than at high 
frequency (fig. 39). At high amplitude the total stiffness in
creased with rising frequency, while at low amplitude it de
creased or remained unaltered.

In previous experiments performed with the fibre at a con
stant mean length, an increase in the resulting stiffness was found 
with rising frequency of the periodic changes in length. The 
present experiments show that this rise can be ascribed to the 
viscous component of the stiffness.

Temperature.
Both the viscous and the elastic stiffness fell with rising 

temperature (fig. 40). This variation proceeded continuously with 
variation in temperature, but since the temperature range ex
amined was naturally limited to 0°—25° C. and the variations in 
stillness were relatively small, it cannot be decided whether 
this dependence follows a linear or e. g. a logarithmic function. 
At rest the elastic stiffness decreased by approximately 1 per cent 
per degree C. at low and moderate loads. At high loads no 
measurable changes in stiffness were observed, even for a 
maximal variation in temperature (25° C.). The viscous stiffness 
decreased appreciably more with rising temperature, i. e. 2 per 
cent per degree C. at a low load and 1 per cent at a high load. 
Viscous stiffness versus elastic stiffness at high and at low tem
perature is plotted in fig. 43. At a high load the increase in stiff
ness with falling temperature was caused exclusively by the 
viscous component.



94 Nr. 7

The elastic stillness versus amplitude relationship was not 
appreciably influenced by temperature in the range of 0° to 
25° C. (fig. 34). The viscous stillness versus amplitude relation
ship, however, changed with temperature such that the maxima 
were shifted to higher values of the amplitude with increasing 
temperature.

In earlier experiments in which the stillness was determined

Fig. 40. Dynamic stiffnesses at rest (thin lines) and during contraction (thick lines) 
at 0° and 24° C. as a function of load.

ordinate: a) elastic stiffness in dynesxcm-1 (1 P0XL^1 = 2000 dynesxcm-1). 
b) viscous stiffness in dynesXcm-1 ( 1 PoXPo~ — 2000 dynesxcm-1). 

abscissa: load in units of Po.
Vibrational amplitude 1 per cent of Lo, deflection measured from the mean position.

at constant length no significant variation in stiiTncss with 
temperature was found in the resting fibre (Buciitiial et al. 
1944a). The relatively small changes in stillness caused by the 
change in temperature were not observable with the low sen
sitivity used in these experiments, i. e. the sensitivity of the 
recording system was adjusted so that the amplifiers would not 
overload for the response of the system up to load Po. Thus, 
in the region of small initial loads the sensitivity was too low. 
At a high degree of stretch, where the accuracy of the measurement 
was sufficiently high, the temperature dependence of the total 
stillness, in agreement with the present experiments, was not 
significant and, therefore, was not observed.
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The effect of hypotonic and hypertonic solutions on 
elastic and viscous stiffness.

When isotonic Ringer’s solution was replaced by a 50 per cent 
hypotonic solution, no significant change was found in the 
viscous and elastic stiffness of the fibre. The average increase 
in the muscle fibre diameter in these experiments amounted 
to 30 per cent. 100 per cent hypertonic Ringer’s solution, however, 
caused a doubling of both the elastic and the viscous stiffness. 
The decrease in diameter averaged 12 per cent and occurred 
in the course of few minutes.

Example: equilibrium length of fibre 6 mm. Load: 0.3 Po.

concentration of Ringer 
in m. equivalents 

per 1.

elastic 
stiffness

10*
dynes x cm“1

viscous 
stiffness

104 
dynes x cm-1

diameter in 
per cent

250 . 3.34 2.68 100
125 . 3.30 2.70 133
500 . 8.10 7.50 89

'fhe effect of hypertonic Ringer’s solution was reversible ami 
at the end of the experiment the fibre was often still excitable. 
An increase in the water content of the fibre, obtained by placing 
it in hypotonic environment, did not affect the structural elements 
which arc responsible for the elastic and viscous stiffness, and 
these elements must be assumed to be maximally hydrated. As 
a decrease in the water content increased the stiffness of the 
structure, this must indicate that part of the structural water 
acts as “softening agent’’ in the same way as plasticisers in high 
polymers.

Elastic and viscous stiffness in isotonic tetanic contraction.

In the range of loads investigated the elastic stiffness in isotonic 
tetanic contraction was higher than that at rest. This was also 
the case at 1.0 Po, where the tension at rest and in contraction 
coincided, i. e. where no more extra tension could be developed 
by contraction. At 0°C. and with a vibrational amplitude of 0.5 per 
cent of Lo, the increase in stiffness during contraction amounted 
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to 50—100 per cent with its maximum at 0.3 to 0.4 Po (fig. 30). 
In fig. 41 stillness and tension at rest and in contraction are 
given as a function of the degree of stretch. In this series, determin
ations of stillness, tension, and length in isoIonic and isometric 
contraction were carried out alternately on the same fibre. The 
stillness varied steeply in the range of length below equilibrium

Fig. 41. Tension (P/Po) and dynamic stiffnesses as a function of length. 0°C. 
Full lines: tension.
Dashed lines: elastic stiffness.
®r viscous stiffness at 0.6 PQ at rest.
(g)m viscous stiffness at 0.6 7% during tetanic isometric contraction, 

viscous stiffness at 0.6 Po during tetanic isotonic contraction.
left ordinate: stiffness in dynesXcm-1 (1 /’„Xi?1 = 2500 dynes x cm“1). 
right ordinate: tension in units of Po.
abscissa: length in per cent of Lo.

length. Corresponding to the higher tension reached in the curve 
for the isometric maxima, the dynamic stillness determined in 
isometric contraction, referred to the same length, was 50 to 100 
per cent higher than that found in isotonic contraction. However, 
when referred to the same tension, the stillness was highest when 
the length of contraction was least, i. e. in isometric contractions 
(Lrest > 100) or in stop (“anschlag”) contractions (Arest < 100). 
The difference between isotonic and “isometric” stillness at the
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same tension was proportional to the difference in length during 
contraction. For a decrease in length of 2.5 per cent an increase in 
elastic stiffness of 1 per cent was measured in “isometric” contrac
tion as compared with isotonic contraction at the same tension. This 
means that in isotonic contraction the variation of stillness with 
load can be described by a family of curves, where each curve

Fig. 42. Dynamic stiffnesses as a function of vibrational amplitude at rest (thin lines) 
and during contraction (thick lines). The figures on the curves denote the load 

in units of JJ0. 0° C.
a) clastic stiffness (left ordinate) in dynesxcm-1, 0° C, (1 = 3600

dynes x cm-1).
b) viscous stiffness (right ordinate) in dynesxcm-1, 0° C, (1 P0XLYl — 3600 

dynes x cm-1).
abscissa: alternating length amplitude in per cent of Lo, measured as deflection 

from the mean position.

represents the stillness-load relation for a certain initial length. 
A similar dependence was also found under isometric conditions 
(Buchthal and Kaiser 1944). The length dependence of the 
stiffness-load relation is not necessarily an expression of a vari
ation in the intensity of the contraction process, since the increase 
in cross section and the shortening in itself must be expected to 
give increased stiffness. The stiffness during tetanic contraction 
is determined exclusively by the length and tension of the libre, 

Dan. Biol. Medd. 21, no. 7. 7 
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regardless of whether the contraction was an isometric, an iso
tonic, a stretch or a release contraction. Even after complete 
relaxation after a tetanic contraction the stiffness was still found 
to be higher than before contraction. This increase practically 
disappeared within 0.5 to 1 minute at 0° C.

In order to be able to measure an increase in stiffness of 
the order found, il is necessary for the shunting effect of the 
connective tissue to be as small as possible. This condition can 
best be obtained by the use of isolated fibres or very small 
bundles. Comparative experiments with large bundles (100— 
150 fibres) often showed only slight or no increase in stiffness 
at all on contraction. An example of the influence of connective 
tissue is given in Table 8.

The variation of the elastic stiffness with the vibrational 
amplitude in tetanic contraction as compared with that found 
at rest is given in fig. 42. The relative effect of a variation of 
the amplitude on stiffness was less during contraction than at 
rest, and stiffness during contraction also varied less with the 
load. The most marked relative variation in stiffness with ampli-

32.5-equilibrium length = 
times the value found in

5 min. Referred to L„
the isolated fibre or in a small bundle.

. stiffness = 1 cm,  -----;— = aO—60, 1. etension

Table 8.
Preparation with high proportion of connective tissue.

Initial 
length in 
per cent 

of L,o

load in 
dynes state

resonance 
frequency 

c.p.s.

shorten
ing in 

per cent 
of Lo

change in 
stiffness 

in per cent

100 64 contraction 64 18
118 64 rest 63.5 — 4
100 64 contraction 64.5 18
118 64 rest 69

122 120 rest 91
104 120 contraction 85 18 — 11
104 120 contraction 87.5 22
126 120 rest 91.5

116 300 contraction 128 19
136 300 rest 128 0
116 300 contraction 128 19
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tude was seen at moderate loads. At low loads (0.1 JJ0) the am
plitude dependence of the stiffness in contraction was only 1, 
at load 0.25 Po and at loads exceeding 0.5 Po | of that found 
at rest (fig. 42). The fact that contraction stiffness decreased less 
with amplitude .than stiffness at rest implies that the increment in 
stillness due to contraction increases with increasing amplitude.

The temperature dependence of the elastic stillness of the con
tracted fibre exceeded that of the fibre at rest. In the load range 
0.1 to 0.5 Po it was twice as high as at rest, i. e. an average of 
2 per cent per degree C. As a function of temperature the elastic 
stiffness fell off more rapidly in the contracted fibre than in the 
resting fibre. Therefore, the extra stiffness developed by con
traction decreased with increasing temperature.

With a vibrational amplitude of 1 per cent of Lo, the viscous 
stiffness in contraction exceeded at low loads that of the resting 
fibre by up to 30 per cent; at moderate and high loads (0.3—0.8 
Po) the increase in contraction was 30—70 per cent (fig. 30 and 
42). Referred to the same load, the viscous stiffness in isometric 
contraction was higher than that in isotonic contraction and, 
with falling final length in contraction, showed at a given load 
the same increasing tendency as the elastic stiffness. The points 
in fig. 41 give an example of the viscous stiffness at load 0.6 Po- 
As a function of the vibrational amplitude, the viscous stiffness 
during contraction only increased very slightly with the load in 
the range of amplitude 0.1 to 0.5 per cent of Lo (fig- 42).

The temperature dependence of the viscous stiffness in con
traction displayed the same behaviour as the elastic stiffness, viz. 
it fell off faster with temperature than in the resting fibre. In 
the range of load 0.1 to 0.5 PQ the temperature coefficient of 
viscous stiffness amounted on the average to 2.2 per cent per 
degree C. (fig. 40). In contrast to the elastic stiffness, the tem
perature dependence of the viscous stiffness only decreased 
slightly with a rising load (up to 0.8 /%). In earlier experiments 
with isometric contractions a considerable temperature depen
dence was also found for the total stiffness.

The plot of simultaneous values of viscous and elastic stiffness 
shows that the increase in total stiffness during an isotonic tetanic 
contraction is caused predominantly by the elastic component 
(fig. 37). It is also seen that a variation in the vibrational am- 

7*  
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plitude gave parabolic curves for each load for contraction as 
well, but in contraction the variation in viscous stillness was 
relatively larger at low amplitudes (see also fig. 42 b). The rising 
part of the curve is therefore more clearly defined.

Fig. 43 shows viscous stillness plotted versus. elastic stillness 
in another series of experiments. This series also showed that the 
increase in stillness during contraction at a low load was chiefly

e/ost/c s f/f/Tress
Fig. 43. Viscous stiffness plotted versus elastic stiffness at rest (thin lines) and 
during contraction (thick lines). The figures on the curves denote the load in units 

of
X = 0° C., • = 24° C.

ordinale: viscous stiffness in dynesXcm-"l (1 P0X¿ó~l “ 1000 dynesxcm *). 
abscissa: elastic stiffness in dynesxcm-1 (1 I>0XL^~l = 1000 dynesxcm-1). 

Vibrational amplitude 1 per cent of L„, measured as deflection from the mean 
position.

due to the elastic component, while the viscous component 
dominated the increase at a high load. The change in stiffness 
during contraction caused by the temperature (2 per cent per 
degree) was up to 0.4 Po caused mainly by an increase in elastic 
stiffness, and at a high load (0.8 Po) by the viscous component.

The values given for the increase of stiffness during con
traction are valid for non-fatigued fibres only. With increasing 
degree of fatigue the increase in stillness fell, and especially al 
low vibrational amplitudes a decrease in stillness of 10—30 per 
cent, accompanying the reduced shortening, could be measured 
in the fatigued fibre.

We have performed preliminary experiments in order to 
determine the course of stillness under isotonic conditions during 
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the transition from rest to contraction. An alternating force was 
introduced on the fibre and the resulting amplitude was recorded, 
in addition to the course of shortening. In these experiments the 
stillness was found to be maximal about 0.1 second after the 
elapse of the latent period. This agrees with the findings in 
transient experiments during contraction (p. 163) and with earlier 
vibration experiments under isometric conditions (Buchthal and 
Kaiser 1944). However, the procedure previously applied for the 
determination of stillness had the limitation that the changes in 
the phase angle were not known, hence it was not possible to 
differentiate between viscous and elastic stillness. In addition, 
knowledge of the change of their mutual relation during the 
development of shortening was inadequate and consequently the 
time of the exact position of the maximum could not be ascer
tained with any great accuracy in these experiments.

Elastic and viscous stiffness in threads of actomyosin.
In a series of experiments we have investigated elastic and 

viscous stiffness in actomyosin threads. The preparation of the 
actomyosin was described in a previous paper (Buchthal et al. 
1949). In these threads the stiffness increased with the load, but 
the dependence was not linear, as was the case in lhe muscle 
fibre (fig. 44 a). The increase in stillness for both elastic and vis
cous stiffness was relatively largest at small loads. With a con
stant load the elastic stiffness also increased with time in the 
actomyosin threads and the increase amounted to about 10 per 
cent within 15—20 minutes. The viscous stiffness, however, 
tended to decline.

The viscous stiffness was about one fifth of the clastic. A vari
ation in stiffness with the amplitude of vibration was also found in 
actomyosin threads (fig. 44b), but this variation mas only 10—20 
per cent of that found in the resting muscle fibre, and was in- 
, i „ . . . iZ (log stiffness)  .dependent of lhe load, -yz;--------- z—— lor actomyosin threadsd (log amplitude J
had a mean value of 0.025 (cf. p. 88). The dependence on am
plitude in actomyosin threads was of the same order of magni
tude as that found in normally vulcanized rubber. Both the elastic 
and viscous stiffness fell by about 1 per cent per degree G. with
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dynes. amp/t fade_ per cent.
Fig. 44. Elastic and viscous stiffness in an actomyosin thread (a) at 0° and 25° C. 
as a function of load in dynes, (b) elastic stiffness in an actomyosin thread at 0c 
and 25° C. with different loads (dynes) as a function of vibrational amplitude (in 
per cent of the equilibrium length). The lowest curve shows the reduced stiffness 
and its increased amplitude dependence after treatment with Na-adenosine tri
phosphate^ X 10~c mol/ml).
ordinate: stiffness in dynes X cm- .
left abscissa: load in dynes.
right abscissa: alternating length amplitude in per cent of Lo, deflection measured 

from the mean position.

falling temperature. In contrast to the findings in muscle the 
temperature dependence of elastic and viscous stillness was 
identical. In agreement with earlier experiments we also found 
in this series that adenosine triphosphate (ATP, 3x 10“®mol/ml) 
caused a decrease in stiffness of almost 50 per cent.1 The relative 
decrease was the same for both elastic and viscous stiffness. 
After treatment with ATP the stillness of the actomyosin threads 
was independent of changes in temperature (0°—25° C.), but a 
larger variation was found with varying amplitude of vibration.

1 Obviously this deviates from the behaviour of the living muscle fibre 
during contraction, e. g. released by application of ATP. According to Szent- 
Györgyi (1949) and Varga (1950) glycerol extracted muscles displayed a me
chanical reaction after application of ATP which in several respects resembles 
that of the living muscle fibre. However, in recent experiments we found the 
decrease in stiffness after application of ATP in glycerol extracted muscle fibres 
as well (Buchthal and Knappeis).
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Dynamic elastic and viscous stiffness as an expression 
of minute structure.

In the interpretation of the structural viscosity a general 
picture has been indicated of the minute structure of the muscle 
fibre (p. 41). Its mechanical reaction is considered to be the 
result of the properties of the minute structural elements them
selves and of the texture in which they are organized. The 
mechanical changes which occur in the elements are transmitted 
along the molecular architecture which constitutes the fibrillar 
system. While the changes in these elements will occur fast and 
dominate the dynamic properties, the adjustment of the texture 
will take time. As the alignment of the texture is far from com
plete (see X-ray diffraction and birefringence) a considerable 
portion of the minute structural elements can be assumed not to 
be under tension. These elements therefore cannot attack the 
points of entanglement in the texture and do not contribute to 
the resulting stiffness. In terms of the model of the texture with 
entanglements of minute structural elements given in fig. 90, this 
means that the stillness of the substance is determined by the 
stiffness between the points of entanglement of the texture, which 
is again dependent on the stiffness of the contractile elements 
themselves. The latter can, however, only exert its influence 
when the chains are aligned by loading. It must thus be assumed 
that with an increasing load more and more chains are caused 
to take up part of the load and then contribute to the external 
stiffness. Simultaneously the elements which were previously 
orientated on account of the increased stretch, give a further

as well, because of their intrinsic non
linear properties.

'fhe result of these interactions between the texture and con
tractile chains is that (1) the stiffness increases with increasing 
load and (2) the stiffness decreases with increasing vibrational 
amplitude. The cause of this amplitude dependence of stiffness 
is a delay in the adjustment of the textural pattern and corre
sponds to the previously mentioned thixotropy (see p. 53). With 
increasing velocity of deformation the number of disrupted 
points of entanglement per second will increase. Assuming that 
the reformation of points of entanglements varies proportionally 
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to the number of latent possibilities for entanglements, under 
stationary conditions the ratio of latent and real points of en
tanglements will vary proportionally to the velocity-amplitude 
(co0 X y0). Therefore, the number of points of entanglement will 
decrease with increasing velocity-amplitude which implies a 
corresponding decrease in stillness.

Apart from thixotropy another factor will be of importance 
which is treated quantitatively in a later section (see p. 295). 
Owing to the delay in the adjustment of the texture the number 
of minute structural elements which are under tension, will vary 
mithin a period of oscillation. Therefore, the stiffness of the fibre 
is maximal during only part of the period of vibration and this 
part decreases with increasing vibrational amplitude. That a 
delay in the adjustment of the texture is an essential factor for 
the amplitude dependence of stiffness, is also indicated by the 
finding that high values of sr1 are associated with a high degree 
of amplitude dependence.

As previously described (p. 50), an increased vibrational 
stillness was found in transient experiments 20 msec, after the 
change in load, as compared with the vibrational stiffness at 
approximately the same frequency when the same tension had 
been allowed to act for a few seconds. The cause of this dif
ference is similar to that described above, in that immediately 
after the change in load a greater number of elements are under 
tension than during stationary load, as the texture has not yet 
reached its stationary adjustment.

The resulting external stiffness is affected by a variability in 
the points of entanglement of the textural pattern. In the same 
way as for other high polymers, it can also be assumed for muscle 
fibres that some of the points of entanglement disappear while 
others are reformed by chance as a result of thermal agitation. 
This fluctuation in the points of entanglement gives the stiffness 
a viscous character. A change in load will thus initially cause 
a tendency towards a new level of orientation, which, however, 
can only develo]) gradually as the pattern adjusts itself. The rise 
in the dynamic stillness with falling temperature expresses the 
longer time taken for regrouping in the texture with falling

, viscous stiffness1 sr = —---------------- .elastic stiffness 
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temperature. This adjustment is not only restricted to the points 
of entanglement, but must also be assumed to occur within the 
chains themselves. The fact that the dynamic stillness is 3 to 5 
times higher than the static, indicates that the adjustment is in
complete within a vibrational period. In dynamic experiments 
the deformation caused by the vibrations is therefore determined 
mainly bv the events in the minute structural elements themselves, 
while in static experiments it is essentially influenced by the 
orientation of the texture.

The increase in stillness accompanying a decrease in the 
water content of the libre can be interpreted as being due to 
the increased number of points of entanglement in the texture 
which occur when the distance between the minute structural 
elements is reduced.

Dynamic elastic and viscous stillness rose in isotonic tetanic 
contraction. This rise is attributed to the interaction of the fol
lowing factors :

(1) The stillness of the contractile chains themselves is gradually 
increased by contraction.

(2) The quick shortening in previously slack chains aligns a 
considerable number of chains which thereby contribute to 
stillness.

(3) 'I'he increased alignment accompanying contraction will 
cause an increased probability for the formation of new 
points of entanglement.

These changes are reflected in part in the spectrum of retardation 
times by a reduction in the density of very short and very 
long times. If we investigate stillness by the deformations 
produced by vibrations of high frequency (i. e. frequencies 
corresponding to the shortest retardation times) these are not 
represented during contraction and, therefore, we here find a 
higher stillness. Measuring at a low frequency (i. e. frequencies
corres g to the longest retardation times) the deformation 
during contraction will include all the retardation times re
presented, while at rest there still will be low retardation limes 
which cannot participate in the deformation. Therefore, we can 
have the peculiarity that static (= semidynamic) stiffness may 
decrease during contraction (Buciithal 1942).



106 Nr. 7

The essential reduction of the amplitude dependence of the 
vibrational stillness in contraction can be explained by the im
proved alignment of the structure in the activated libre. Thereby 
the prerequisite for a significant change of stillness with amplitude 
(slack chains) is no longer present.

In dynamic experiments the increase in stillness during con
traction is dominated by an increase in elastic stillness at a low 
load, while the viscous component apparently dominates at a high 
load. It should, however, be remembered that viscous stillness 
varies with the vibrational frequency to a higher degree than 
the elastic stillness (cf. p. 91). With higher load the resonance 
frequency increases and the increase in frequency can account 
for the differences in behaviour of the viscous stillness found 
at high and al low loads.

We have so far considered the dynamic stillness at the isotonic 
maximum, i. e. under approximately stationary conditions, which 
are characterized by a definite dependence between stiffness and 
load. On transition from rest to contraction, special conditions 

, . . .... /stiffness) ... iapplu. I he relative stillness . , which at rest is independent77 y (tension/ 1
of the tension and the change of which must be considered an 
expression of an essential alteration in the structure of the fibre 
caused by contraction, increased initially rapidly and had its 
maximum before the tension reached its maximal value. Among 
the factors which must be assumed to be the cause of the change 
in stillness on contraction, the maximum must be referred to 
those mentioned in (2). The rapid shortening of the slack, long 
chains gives a contribution to the stillness at the beginning of 
the contraction (see p. 163). As the shortening in the active 
substance gradually proceeds, the internal forces will increase 
up to a certain value. Then the pattern will “give”, thereby 
partly compensating the initial rise in stillness. In addition, the 
fact that the influence of changes in the vibrational amplitude 
is considerably less during contraction than at rest, must be 
interpreted as indicating that the number of slack chains is 
reduced during contraction, thereby causing a greater number of 
chains to participate more equally in bearing the load within 
the period of deformation. The change in the diffraction spec
trum likewise indicates the better alignment of minute struc- 
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tural elements caused by contraction (Buchthal and Knappeis 
1940).

In a later section, an attempt is made to give an approximately 
quantitative treatment of the mechanical effect of inter- and 
intramolecular rearrangements.

Voigt-model and vibration experiments.
In the definitions on p. 18 of dynamic elastic and viscous stiffness as 

measured in vibration experiments we used for the description of the 
mechanical reaction of the muscle fibre a single Voigt-element (a retarded 
elasticity) but emphasized that this model is only of approximate 
validity and can only be used for suitably high frequencies (> 50 c.p.s.) and 
amplitudes < about 2 per cent of the equilibrium length of the fibre. 
In the interpretation of the isotonic transient experiments a Voigt- 
model was applied, i. e. a series of 'Voigt-elements with different retar
dation times.

The Voigt-model is characterized by the distribution function

.7 (t) and the series elasticity — (comp. p. 67). Interpreted in terms 
•A)

of the minute structure J (r) and Jo describe the delayed and instan
taneous adjustment of the fibre structure to a transient change in load 
or length. According to the picture of the fibre structure indicated 
above, the cause of this delay is the finite velocity with which entangle
ments in the texture are broken and reformed. An infinitesimal range 
in the distribution function around a fixed retardation time can be 
considered a Voigt-eZemenf and corresponds to changes in the fibre struc
ture which proceed with a delay corresponding to this retardation time.

When applying the Voigt-model derived from the course of adjust
ment in isotonic transients to vibration experiments it must be kept 
in mind that the distribution function J (r) (43) was determined from 
the prolonged creep alone, i. e. from changes in length occurring more 
than 20 msec, after the transient change in load. Therefore, the part 
of the spectrum of retardation times lying appreciably below 20 msec, 
is rather poorly determined. Furthermore, the deformations in the 
prolonged creep experiments used to determine the spectra of retar
dation times were large, up to 30—50 per cent of the equilibrium length 
of the fibre, so that they are of quite another order of magnitude 
than the small deformations in the vibration experiments. The vibra
tional frequencies were 25—150 c.p.s. corresponding to periods of 
7—40 msec. Consequently, they partly go down to times within the 
poorly determined section of the spectrum of retardation times.

When a Voigt-model is subjected to an external alternating force: 
o (f) = Gq cos cot, the stationary motion of the system will, just as for 
the single Voigt-element, be of the type: y (f) = y0cos(a>f — <p).
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Therefore, dynamic elastic and viscous stiffness for a Voigt-mode/ 
in forced vibrations can be defined as the elastic and viscous stiffness 
for the Voigt-eZemenZ which when acted on by the same alternating 
force performs the same movement as the Voigt-znodeZ. While for a 
Voigt-element the elastic stillness is independent of the frequency and 
the viscous stiffness is proportional to the frequency, both stiffnesses 
for the Voigt-zziodeZ depend on frequency and the viscous stiffness is

not simply proportional to the frequency. The ratio -° between the 
<*o

deformation amplitude and the external force amplitude which acts 
on the system, varied experimentally with the frequency in ap
proximately the same way as it does for a single Voigt-element. How
ever, the phase did not vary in the expected manner. If a Voigt-znodeZ 
is applied the experimental changes in phase can be appropriately 
described as well. For a Voigt-model with the distribution function

1948,

p. 189 if.):

1
J (r) and the series elasticity — it is found (cp. e. g. Alfrey 

r j(T)dr_ 
________  ° + J„ ! + (cot)2

17 + r j(t) di V __l i r ïïlîw 
V° + )0 1 + (cot)*/  + 1 + i

(59)

and

t*  
_________ Jo 1 + (cot)2___________  

( J , r d(T)dT Y /C00 COTJ(T)drY 
V°.'o 1 + V«)T)Y 1 -J- (cot)*J

(60)

If the Voigt-model is coupled with an inertia m, the resonance fre
quency co0, i. e. the frequency at which the phase displacement between

the external alternating force and the deformation caused by it is 
is determined by:

n
2’

ZZl cOq — belast (cOq). (61)

Therefore, the stiffnesses measured depend upon the measuring fre
quency, which is influenced by the inertia m.

By introducing the distribution function (43) and the different 
boundary values r1 and r2 (Table 6) in the formulas (59) and (60) we 
obtain elastic and viscous stiffness as a function of the frequency. Fig. 45 
shows these quantities and the total stiffness (cf. p. 90) for the Voigt- 
models corresponding to the resting fibre and to the tetanically con
tracted fibre at 0° C. The curves for the Voigt-model which corresponds 
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to the resting fibre at 25° C. are very similar to those for the model 
of the resting fibre at 0° G. While for the Voigt-model corresponding 
to the resting fibre elastic, viscous, and total stiffness increase with 
frequency in the frequency range of interest for the vibration experi-

Fig. 45. Elastic, viscous, and total stiffness as a function of vibrational frequency 
in the Voigt-model developed from isotonic transients (cf. fig. 26 0° C.). 

Thick lines: model corresponding to contraction, right ordinate. 
Thin lines: model corresponding to resting fibre, left ordinate. 
ordinate: stiffness in units of c-1 (cf. equation 43). 
abscissa: frequency in c.p.s.

ments (25—150 c.p.s.), conditions are more complicated for the Voigt- 
model corresponding to the tetanically contracted fibre (comp. fig. 45). 
Here elastic and total stiffness increase with frequency, while viscous 
stiffness first increases to reach a maximal value at about 70 c.p.s. 
and then decreases.

In experiments on the resting fibre in which the resonance fre
quency was varied by altering the equivalent mass of the recording 
system (cp. p. 91) a reduction of the frequency by a factor 4 caused 
a slight increase in the elastic stiffness (at most 10 per cent) and a 
decrease in the viscous stiffness by 50—25 per cent according to the 
tension on the fibre. In the Voigt-model given in fig. 45 a reduction 
in frequency to one fourth in the frequency range 25—150 c.p.s. results
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in a decrease in elastic stiffness of 20 per cent and viscous stiffness

ratio”, sr

corresponding 
the frequency 
for sr at rest

decreases 45 per cent. 
“Stiffness

(o)) 
calculated for the Voigt-model 

Oplast (iy)
to the resting fibre varies between 0.32 and 0.49 when 
increases from 25 to 150 c.p.s. The experimental values 
are 0.5—1.0. During contraction the Voigt-model gives

values of sr between 1.28 and 0.38 when the frequency varies from
25 to 150 c.p.s. The experimental values of sr during contraction are
1.0 to 0.4.

From the preceding it appears that the Voigt-model obtained from 
the isotonic transients can be applied with certain reservations to the 
vibration experiments. Thus, explained by means of a Voigt-model of 
the type applied hitherto the values of sr obtained in vibration ex
periments at rest would imply a lesser representation of the shortest 
retardation times and probably fewer long retardation times. When 
the spectrum is narrowed to — 10 ' sec. and r2 = 1 sec. the values 
for sr more closely resemble the experimental ones, i. c. sr = 0.64 at 
25 c.p.s. and sr = 1.13 at 150 c.p.s.

The steep decrease in viscous stiffness during contraction which 
occurs with frequencies > 100 c. p. s. is due to the assumption of a 
Hookean series elasticity. In reality the decrease will be less pronounced, 
since the series element must be regarded as having properties of a 
retarded elasticity similar to those of the resting fibre.

The above calculations gave a frequency dependence for the elastic 
and viscous stiffnes of the Voigt-model, but no amplitude dependence. 
As previously mentioned, two closely related properties may account 
for the amplitude dependence found in the experiments: 1) the varying 
number of contractile chains under tension during an oscillation period 
and 2) the delayed adjustment caused by thixotropy (cf. p. 52). The 
former possibility is treated in detail in Appendix II.

3) The significance of the sarcolemma for the length
tension diagram of the resting muscle fibre.

In the evaluation of the length-tension diagram and transient 
experiments in the resting fibre, it is essential to know whether 
the mechanical properties investigated are localized in potentially 
active, i. e. contractile substance, or in passive elements. Passive 
substance constitutes part of the fibre content and the surrounding 
sarcolemma.1 The question of the part played by the sarcolemma 
in the length-tension diagram has been disputed.

1 Histological investigations indicate that the sarcolemma consists of two layers, 
a plasma membrane and an outer layer of reticular libres (Long 1947 and Sitara- 
mayya 1951). The reticulum has been demonstrated in electron micrographs 
(Draper and Hodge 1949, Rozsa el al. 1951). In the following we denote by 
sarcolemma both structures.
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According to Ramsey and Street (1940, 1947) the tension in 
the resting libre is considered to be caused exclusively by the sar- 
colemma. Hence, the length-tension diagram of the contractile

/eng th
Eig. 46a. Length-tension diagram recorded with increasing (•) and decreasing (O) 
length in an uninjured isolated fibre (full lines) and in the same fibre with empty 
sarcolemma tube (broken lines). In the latter the increase and decrease was per
formed twice; 0° C., fibre diameter at equilibrium length (Lo) 160 /i, Lo = 0.8 cm 

(Sten-Knudsen).
ordinate: load in dynes. 
abscissa: length in per cent of Lo.

substance can only be represented by the course of the extra 
tension as a function of the length of the fibre, with the exception 
of the length at maximal shortening, where the sarcolemma tube 
can limit the shortening which is accompanied by an increase 
in the cross section of the fibre. Ramsey and Street support 
their hypothesis with experiments which showed that the tension 
developed by the intact fibre practically coincided with the
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dynes

9000

Fig. 46b. Stiffness as a function of tension for the same fibre as in fig. 46a. 0° C. 
Full lines (thin) : dynamic stiffness in dynes x cm-1, uninjured resting fibre, vibration 

frequency approx. 15 c.p.s.
full lines (thick): static stiffness in dynes x cm“ ’, uninjured fibre. (X).
broken lines, upper curves: dynamic stiffness in dynes x cm-1, fibre with empty sar- 

colemma tube.
broken lines, lower curves: static stifTness in dynes X cm“1, fibre with empty sarco- 

lemma tube. (-|-).
The figures on the curves denote the length in per cent of Lo.

• increasing length, O decreasing length. 
(Sten-Knudsen) 

ordinate: stifTness in dynes X cm- *.  
abscissa: load in dynes.

tension which was developed at the same length by a sarcolemma 
tube alone, emptied of the fibrillar contents. In a previous paper 
it has been pointed out (Buchthal 1942) that this coincidence 
is surprising on account of the elongation of 50 to 70 per cent, 
which was measured for the sarcolemma tube after retraction of 
the fibre content (cf. Bairati 1937).
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A comparison of the length-tension diagram of an intact 
libre with that of the same fibre after lesion, showed, in agreement 
with Ramsey and Street (1940, 1947), that the tension in both 
cases is of the same order of magnitude (fig. 46 a). However, 
Dr. Sten-Knudsen, who kindly made these measurements, did 
not in any case find the coincidence described by Ramsey and

>__ i__ i
O OJ mm

Fig. 47. Microphotograph of fibre with damaged region and empty sarcolemma 
tube.

a) fibre part with intact cross striations.
b) empty sarcolemma tube.

Note the graphite granules on uninjured and empty parts.

Street. A considerable difference was seen especially at the first 
extension, when the lesion (which was produced by local com
pression) and the retraction of the fibre content occurred at low 
degrees of stretch. It can be seen that the tension here at the same 
length was considerably higher, probably as a result of shrinkage 
of the sarcolemma at the retracted region ; and only after repealed 
stretches could reproducible values be obtained for the length
tension diagram of the injured fibre.

After retraction of the fibre content, the diameter of the sar
colemma tube decreased to about 60 per cent of the original 
diameter, while the length was only increased by about 40 to 50 
per cent (fig. 47). Hence the volume enclosed by the sarcolemma 

Dan. Biol. Medd. 21, no.7. 8 
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tube was diminished by about half. The decrease in volume 
became more marked with increasing degree of stretch (fig. 49). 
Since this reduction in volume did not result in a corresponding 
increase in those parts of the fibre to which the fibre content 
had retracted, it must be assumed that part of the water left the 
fibre, either as a result of pressure or changed osmotic activity 
within the fibre. After the first extension had been completed, 
hysteresis and plasticity in the fibre with an empty sarcolemma 
tube was less than in the intact fibre.

The empty sarcolemma tube, however, only extended over 
part of the fibre, the length-tension diagram of which was 
determined, and it was of interest to carry out direct measure
ments on the part of the fibre with the empty sarcolemma 
tube in comparison with its intact parts. By placing small graphite 
grains on different parts of the fibre before injuring it, it was found 
(Casella 1951) that the lesion, which was performed at 40 per 
cent stretch of the intact fibre, caused an increase in equilibrium 
length of the injured part of on an average 46 per cent. This 
increase in equilibrium length occurred equally in the empty 
sarcolemma tube and in the adjoining region of the fibre, which 
showed only disintegration of the cross striations. The static 
stiffness of the empty sarcolemma tube was considerably higher 
than that of the portion of the fibre with intact cross striations. 
Measuring the change in length by the distance between two groups 
of graphite grains placed on the sarcolemma tube and the intact 
fibre section, it was found that the length of the sarcolemma tube 
increased on an average 2.4 times less than that of the fibre 
section with intact cross striations. This indicates that the relative 
static stiffness is 1.65 times higher than in the intact fibre, re
ferred to the same tension and to the equilibrium length of the 
sarcolemma in the intact fibre. Fig. 48 shows, for 8 fibres, the 
relative length of the empty sarcolemma tube with its new equili
brium length as unit length plotted versus the relative length in 
an intact fibre section.

The maximal length of the sarcolemma lube reached be
fore rupturing was on the average 135. Considering that the pre
viously mentioned elongation caused by the injury, amounted to 
0.46 ± 0.03 Lo, the ordinate value 100 in fig. 48 corresponds to 
length 146 (referred to the length of the sarcolemma at the cquili- 
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brium length of the intact fibre). The breaking length of 135 thus 
becomes 197 (135x 1.46).

In contrast to the increased static stiffness, the dynamic 
stiffness determined in vibration experiments (10—12 c.p.s) and 
compared at the same tension decreased when the fibre was 
injured (fig. 46b). Up to length 140—150 the decrease in stiffness

<00 «O <20 <30 MO <50 <60 <70 <80 <90 200 2<O
Fig. 48. Length of the empty sarcolemma tube plotted versus the length of the 
fibre region with intact cross striations during stretch. Tensile force identical in 
intact and empty regions (second stretch). The different signatures indicate 

experiments on different fibres (20° C.). (Casella 1951).
ordinate: length of the sarcolemma tube in per cent of its Lo 
abscissa: length of the fibre part with intact cross striations in per cent of Lo 

of the intact fibre.

was slight, but since only part of the fibre had been transformed 
to the emptied state, an appreciable decrease in dynamic stiffness 
must have occurred in the injured part of the fibre. At longer 
initial length the decrease was considerably more pronounced 
and the linear dependence between stiffness and tension, char
acteristic of the intact fibre, could no longer be observed. At a 
load of 100 dynes the dynamic stillness of the fibre before injury 
was 5 limes higher than the static. After injury the static stiffness 
rose simultaneously with the dynamic stiffness and, referred to 
the same tension, the difference now was only a factor of 2. 
This must mean that the elasticity of the injured fibre is less 
influenced by viscosity than the mechanical reaction of the 
intact fibre.

The mean values of breaking length and breaking stress for
8*  
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intact fibres and fibres with empty sarcolemma sheaths, and 
values for the maximal specific tension developed in isometric 
tetanic contraction are given in Table 9 (Casella 1951).1

Both the sarcolemma of the intact fibre and the empty sar- 
lemma tube must have a considerable strength. Reckoning with 
a thickness of the sarcolemma wall of 0.1 (Barer 1948, .Jones 
and Barer 1948) and with an average fibre diameter of 125 // and 
finally with a breaking force of the intact fibre of 16 kg per cm2 
(referred to the cross sectional area of the breaking length L — .300) 
the breaking force of the sarcolemma should be 5.45 tons per cm2. 
Casella (1951) found the breaking force of the empty sarcolemma 
tube to be 2.8 tons per cm2 (referred to the cross sectional area 
at the breaking length L = 230). For comparison some values are 
given below of the breaking force of other tissue and of iron:

Breaking force
material tons per cm2

Human tendon  0.6—1.3 (Cronkite 1936)
Ligamentum muchae
(cattle)  0.012—0.042 (Wohlisch et al. 1927)
Cast iron  1.2

Steel..................................... 6—7Casella (1951) has shown that the breaking length and break
ing stress in the fibre with an empty sarcolemma tube was con
siderably lower than in the intact fibre. The fact that the sarco
lemma in the intact fibre did not break before a relatively long 
length was reached, is probably due to the extra deformation 
arising in the cross section of the empty sarcolemma tube on 
stretching and not by accidental “weak spots”. The decrease in 
the diameter of the empty sarcolemma tube on stretching was 
more pronounced than that occurring in the intact fibre or on 
stretching a rubber tube. A stretching of the intact fibre or of 
a thin-walled rubber tube of 40 per cent is accompanied by 
a decrease in diameter of 15 per cent. A corresponding stretch 
of the empty sarcolemma tube caused a decrease in diameter 
of 60 to 85 per cent. Assuming a constant volume of the sarco-

1 Walter (1944-1947) determined the breaking stress of whole muscle (frog’s 
gastrocnemius) to 4-9 kg per cm2 (20° C). Since this value is of the same order of 
magnitude as the breaking stress of the isolated fibre, the intramuscular connec
tive tissue can only be of minor importance.
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* Referred to the area of the intact fibre at equilibrium length.

Table 9.
Breaking stress and breaking strain (Casella 1951).

xio6
dynes/cm2 

20° C.

Units 
of Po 
20° C.

xio6 
dynes/cm2

0°C.

Units 
of Po 
0°C.

Maximal tetanic ten-
sion, isolated fibre from 
anterior tibial, gas
trocnemius, and semi- 
tendinosus ............... 3.29 ± 3 <•/„ 1.00 2.75 ± 3 o/o 1.00

Breaking stress of the
intact fibre............... 4.35 ± 5 o/o 1.35 5.51 ± 4.5 °/0 2.00

Breaking stress of the
fibre with empty sar
colemma tube*  ........ 2.72 ± 7 »/0 0.84 3.64 ± 5 o/o 1.33

percent of theequili- per cent of the equili-
Breaking strain of the brium length (20°C.) brium length (0°C.)
intact fibre...............

Breaking strain of the
339 ± 5 »/0 302 ± 5 «/„

fibre with empty sar
colemma tube......... 200 ± 1.5 °/0 229 ± 2 °/0

lemma during the stretch, this considerable decrease in dia
meter must be accompanied by a corresponding increase in the 
thickness of the sarcolemma wall.

When the libre content had retracted after injury, the diameter 
decreased, and at equilibrium length the diameter of the empty 
sarcolemma tube was only 55 per cent of the diameter of the 
intact fibre. The libre content must therefore have been subjected 
to a radial pressure arising from tangential elastic forces in the 
sarcolemma tube. At equilibrium length of the fibre, this pressure 
must have caused an elongation and orientation of the fibrils in 
the fibre in such a way that they react as if they were acted 
upon by an external longitudinal force. At the equilibrium length 
of the sarcolemma lube (L = 146) the tangential force will give 
rise to a hydrostatic pressure inside the tube, whose components 
along the longitudinal axis of the libre will act to counteract 
an externally applied load. Thus, when the longitudinal 
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tension arising intrinsically in the sarcolemma is just com
pensated by the longitudinal force arising from the intrinsic 
tangential elastic forces in the sarcolemma, then the net-con
tribution with respect to the external longitudinal force becomes 
zero. This must be assumed to occur at a length slightly longer 
than the equilibrium length of the sarcolemma. Only at a length 
longer than the latter can the sarcolemma give a positive con
tribution to the total libre tension. At equilibrium length of the 
fibre, there must be equilibrium between the three factors giving 
rise to an external longitudinal force, i. e. the longitudinal force 
of the fibrils, the longitudinal force of the sarcolemma, and the 
tangential force of the sarcolemma. It is impossible to decide 
with certainty whether the equilibrium length measured for the 
empty sarcolemma tube (146 compared with 100 for the fibre) 
and the corresponding diameter (55 per cent of that of the intact 
fibre) is actually the equilibrium length of the sarcolemma in 
the intact fibre. The occurrence of an irreversible plastic change 
in the texture of the sarcolemma on retraction of the fibre contents 
cannot be excluded.

The marked transverse contraction on stretching showed that, 
in addition to the tangential force caused by the smaller equili
brium diameter of the sarcolemma as compared with that of the 
fibre, a tangential force also arose as a result of the stretch. This, 
however, was not very large. The length-tension diagram of 
the empty sarcolemma tube did not differ significantly from that 
of the sarcolemma tube filled with disorganized fibre substance. 
In this portion the diameter was equal to that of the intact fibre. 
Thus, an only insignificant work of deformation accompanies 
the reduction in the cross section. Since the deformation itself 
is relatively large, the resistance of the sarcolemma to the tan
gential deformations must have been slight. As regards the ef
ficiency of the fibre this flexibility in the sarcolemma implies that 
unnecessary work of deformation is minimized during the changing 
cross section, which accompanies the shortening of the muscle fibre.

The experiments on the empty sarcolemma tube reported 
here, do not confirm the hypothesis of Ramsey and Street 
(1940, 1941) that the sarcolemma alone is responsible for the 
tension of the fibre at rest. There are two possible interpretations 
of the present experiments. One interpretation is that the sar
colemma tube, as already mentioned, is so much altered in its 
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structural properties that it is not justifiable to draw any con
clusions with regard to the properties of the sarcolemma in the 
intact fibre. The other possibility is that the contribution of the 
sarcolemma tube to the total tension of the muscle fibre at rest is 
of minor importance. The latter alternative is illustrated by the re-

/engfh
Fig. 49. Tension and diameter as a function of length in the uninjured muscle fibre 

and its empty sarcolemma tube.
curve I: length-tension diagram of uninjured resting fibre, interpolated to the 

breaking point.
curve II: length-tension diagram of the empty sarcolemma tube from tension 

zero to the breaking point.
curve III: diameter of uninjured fibre as a function of length.
curve IV: diameter of empty sarcolemma tube as a function of length.
left ordinate: diameter in per cent of the diameter of the uninjured fibre at equilibrium 

length.
rq/M ordinate: load in units of Po.
abscissa: length in per cent of Lo.
(Casella 1951).

construction of the length-tension diagram of the sarcolemma (fig. 
49). This is based on the following experimental findings: (1) 
the equilibrium length of the empty sarcolemma tube on an 
average was 46 per cent above that of the intact fibre; (2) the 
static stiffness of the empty sarcolemma tube was 1.65 times that 
of the intact fibre section, referred to the same load. The curves 
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in fig. 49 show that the sarcolemma only gives a positive contribu
tion to the total tension of the fibre at rest, above a length of 150. 
At shorter lengths its contribution to the tension is zero or negative.1 

The deformation of the cross section in the empty sarcolemma 
tube has no significant effect on the length-tension diagram as com
pared with the length-tension relation in a sarcolemma tube 
which is filled up with disintegrated fibrillar substance. Moreover, 
since the total deformation in any case does not exceed the de
formations which may arise in the intact fibre, it is probable 
that the length-tension diagram of the empty sarcolemma tube, 
as it is represented in fig. 49, is a satisfactory expression of the 
properties of the sarcolemma in the intact fibre. The rôle of the 
sarcolemma at the transition from rest to contraction is discussed 
in connection with the series elastic element (cf. p. 174).

Part III
The dynamics of isotonic contraction.

The mechanical changes which arise in a muscle fibre on 
activation, were investigated during tetanic and single contractions. 
In the first section, we will consider the tetanic contraction which 
in its external manifestations displays relatively simple pro
perties. In contrast to the twitch, there is sufficient time available 
for a mechanical adjustment of the substance to the changes 
caused by the contraction process. As mentioned in the Intro
duction, in the present material stress is laid on an analysis of 
the mechanical properties under isotonic conditions. This gives 
the important advantage that pure elasticities which are in series 
with the contractile components do not change their lengths and 
hence do not exert a varying influence on the length of the fibre 
during transition to an active state.

1 The findings in the present experiments, divergent from those of Ramsey 
and Street (1940), cannot he explained on the basis of differences in the length
tension diagrams of the non-injured fibre. If the slope of Ramsey’s length-tension 
diagrams had been much flatter than the slope in the diagrams of our intact 
fibres, the tension obtained at the natural length of the empty sarcolemma 
tube would only be of minor importance as initial tension. However, at this 
length (L = 146) in Ramsey’s experiments the fibre tension amounted to 8 and 
25 per cent of the maximal tension developed in contraction (1940, figs. 3 and 4), 
as compared with a fibre tension of 10 per cent in the present experiments.
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Tetanic contraction.
Curve of isotonic maxima.

The maximal shortening obtained for a given load in isotonic 
tetanic contraction is called an isotonic maximum. The curve 
of isotonic maxima as a function of load displayed an S-shaped 
characteristic (tig. 50). It rose steeply from equilibrium length

Fig. 50. Length-tension diagram of the isolated fibre at rest, during isometric 
tetanic contraction, isotonic contraction, afterload contraction, and during release 
contraction to the same tension as at rest. 0° C. Vertical broken line indicates 

the position of the stop in afterload contractions.
ordinate: tension in units of Po.
abscissa: length in per cent of Lo.

during contraction (length 50—60) and the shortening (dif
ference between length at rest and during contraction at the 
same load) was maximal at 0.4 Po, amounting to about 100 per 
cent of Lo at 0° C. At 0.75 Po, the S-shaped curve had its point 
of inflexion, and the contraction curve then gradually approached 
the resting curve.

The shortening in tetanic contraction increased with rising 
temperature. The temperature range examined was naturally 
limited to temperatures between —2° and +26° C. Fig. 51 shows 
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the shortening as a function of the temperature during tetanic 
contraction at low load (0.1 Po). The shortenings given are mean 
values obtained by continuous cyclical changes in temperature 
from —2° to +26° C. The cyclical measurements show that the 
shortening during rising temperature was less than the cor
responding shortening during falling temperature. This hysteresis

Fig. 51. Maximal shortening velocity and shortening as a function of temperature. 
Constant load = 0.3 Po.

left ordinate: shortening velocity in Lo per second.
right ordinate: shortening in per cent of Lo. 
abscissa: temperature in °C.

was not due to incomplete equilibration of temperature between 
the Ringer’s solution and the muscle fibre. It must be caused by 
a slow adjustment of temperature-dependent equilibria in the 
structure. In other experiments we have examined the effect of 
two extreme temperatures, 0° and 26° C., and waited until 
temperature equilibrium was obtained at the different loads ex
amined. On each fibre, at least three experiments were carried 
out, one at 0° C., one at 26° C., and repetition of the experiment 
at 0° C. Only experiments which showed agreement in the two 
series carried out at 0° C., were included in the material. The 
curves in fig. 52 show an example of the shortening at 0 C. and 
at 26° C. as a function of the load. The curve at 0° C. is a mean 
value of the first and last series. At low loads, the shortening at 
26° C. was about 25 per cent higher than the shortening at 0° C.
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The difference increased with rising load, the shortening at 0° C. 
decreasing rapidly with the load. This decrease in shortening 
may be more or less pronounced as can be seen by comparing 
the present example with the mean curve in fig. 57.

Compared with the temperature dependence of the length of 
the resting fibre (maximally 1 per cent per 25° C.), the temperature 
dependence of the active fibre was 25 times larger at the load 
at which the shortening at 0° C. was at its maximum (fig. 52).

Fig. 52. Maximal shortening in an isotonic twitch and tetanus as a function of load. 
0° C. and 26° C.

ordinate: shortening in per cent of Lo. 
abscissa: load in units of Po.

While increasing load caused decreasing temperature dependence 
at rest, the reverse was true during contraction.

If extrapolation is performed on the curve for the data at 
0° C. a value for Po would be obtained which would seem to 
indicate that it was | Po at 26° C. However, the small difference 
in Po obtained in isometric contraction shows that extrapolation 
is not permissible in this region. In fact the curve for 0 C. must 
intersect the abscissa (fig. 52) at higher values than indicated by 
an extrapolation. The tension rose only 1 per cent per degree rise in 
temperature, the average value of isometric tension at 0° C. being 
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2.75 ±0.095 X IO6 dynes per cm2 and at 20° C. 3.27 ±0.100 x 106 
dynes per cm2 (temperature coefficient 9.8X10 ’ ± 2.4 X 10~3, 
Casella 19511). The relatively small change in Po accompanying a 
change in temperature, as compared with the rapid decrease of 
the shortening with decreasing temperature indicated that the 
shortening tended to be inhibited at low temperature and high 
load. It must be assumed that these conditions offered good possi
bilities for “crystallizations”, i. e. that the contractile substance 
formed aggregates, which could not participate in the active 
shortening and inhibited it.

The variation in shortening with temperature during a 
twitch was fundamentally different from that in tetanic contrac
tion (see p. 142).

Creep following quick changes in load applied during 
tetanic contraction.

Sudden changes in load have been introduced and the re
sulting changes in length have been recorded at the tetanic level 
in the same way as described for the resting fibre (p. 45). 
At small changes in load (< 0.2 7-* 0) the initial change in length 
and the velocity with which this proceeds was half of the cor
responding value in the resting fibre. With increasing change in 
load, the amplitude and velocity of the initial change in length 
approached the values found at rest.

The creep curve, i. c. the change in length in the range from 
20 to 1000 msec., had an approximately linear course as a 
function of the logarithm of time (fig. 20). The creep velocity 
was about twice that found at rest. At large changes in load 
(> 0.4 Po) the final change in length was larger and at small 
changes in load (< 0.1 7%) less than at rest, and at changes in 
load of between 0.1 Po and 0.4 Po the creep curves for rest 
and contraction intersect.

The almost linear course of the change in length as a function 
of the logarithm of time justifies characterizing the curve by 
means of a constant Cj, as in the resting curve (cf. p. 55). C¡ 
is considerably higher in contraction than al rest, and the diffe
rence which is largest at high loads is at least 50 per cent.

1 From experiments of Ramsey and Street, Bull (1945) calculated a tem
perature coefficient for the isometric tension of 8.4 x 10—8 ± 3.6x 10“3.
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However, during contraction the change in length approached 
rapidly a limiting value after a few seconds; this did not occur at 
rest.1

Table 10 shows that at 0° C. the creep velocity was higher 
in the contracted than in the resting fibre while contraction 
reduced the initial velocity and the amplitude of the change in 
length. The difference between rest and contraction corresponds

Table 10.
The constant Cz for change in length (zlL) as a function of lime in 
the resting and contracted fibre al different changes in load (0°C.).

Temp. °C State d P/Po AL at
0.02 sec.

A L at
0.14 sec.

A L at
1 sec. (q in °/0

0....................... rest 0.11 20.4 27.0 32.6 3.67
0....................... contr. 0.11 10.0 21.5 31.3 6.06
0....................... rest 0.19 21.5 29.9 36.4 4.87
0....................... contr. 0.19 13.0 26.9 40.9 7.19
0....................... rest 0.39 24.6 30.0 34.6 3.00
0....................... contr. 0.39 24.9 39.0 53.5 7.12

z/P = Pa—Pi where P¡ is the initial load and Pa

For increasing load, Pt = 4 Pi and for decreasing load Pa

the load after the change in load. 
p.
—. The constants found 

/ 4
are mean values for positive and negative values of -g—. The change in length and C, are

* 0 
expressed in per cent of the equilibrium length.

to that which occurred at rest, when the fibre was cooled from 
25° to 0°. In the mechanical reaction of the fibre to a transient 
change in load the resistance is increasingly dominated by 
viscous forces as the temperature falls and even more so when 
the fibre is thrown into the contracted state.

The transient course recorded here showed good agreement 
with the measurements of dynamic and static stiffness. The 
smaller initial change in length, which was found at a given 
change in load, as compared with rest indicates that the dynamic 
stiffness rises during contraction. The higher creep velocity as

1 Similar to Hill’s estimate of the elastic energy liberated by sudden release 
of contracted whole muscle (1950 b) we have calculated this quantity for the iso
lated fibre. At release from 0.5 Po during the first 20 msec, an energy correspond
ing to 0.03 P0XL0 was transmitted to the recording system. Later on (interval 
20 to 200 msec.) the energy rose to 0.05 P0X Lo and increased approximately 
linearly with the logarithm of time (fig. 20). The continuous way in which the 
elastic energy is liberated in the isolated fibre indicates that it will hardly be pos
sible to distinguish between purely elastic and retarded components. 
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compared with rest, and the larger final change in length on 
contraction especially at high load, indicate that the fibre is 
considerably more finid and has a smaller static stiffness on 
contraction than at rest. The elongation reached shortly (2—10 
msec.) after a change in load corresponds to the high valnes for 
the dynamic stiffness, which were found in vibration experiments, 
with frequencies of about 200 to 50 c.p.s. The elongation after a 
longer interval (20—200 msec.) corresponds to the lower values 
for stillness found at frequencies of about 10 to 2 c.p.s.

As already mentioned in the discussion of transient ex
periments on the resting fibre, creep during contraction can be 
described by means of a Voigt-model. Fig. 26 gives the distri
bution of the retardation times calculated on the basis of the 
experimentally determined course of elongation at rest and on 
contraction. The spectrum of the retardation times during con
traction had a smaller representation of short retardation times 
and the long times, found at rest, were completely missing on 
contraction. The high dynamic stillness found during contraction,

Fig. 53. Adjustment of length at 0.1 Po as a function of time after a short decrease 
(curve la and 1 b) or a short increase (curve 2a and 2b) in load.

a: rest, b: isotonic tetanic contraction. 0° C. See fig. 54.

Fig. 54. Adjustment of length in isotonic tetanic contraction at constant load 
(0.1 Po). Curves a and c after a preceding increase, curve b after a preceding de

crease in load. Lo = 4 mm. 0° C.
Duration of the stimulation is indicated by the broader line of the myogram.
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as compared with rest, is interpreted as an expression of the 
smaller representation of shorter retardation times, and the more 
rapid approach to a stationary state after a transient must be 
interpreted as an expression of the absence of long retardation 
times which are replaced by the more numerous retardation 
times of intermediate size.

Thus, the change in the retardation time spectrum on contraction 
can illustrate the observation that a contraction is able to ex
tinguish the influence of mechanical effects, to which the fibre 
has been subjected at rest. An adjustment towards equilibrium, 
which on contraction was reached within 3 seconds, required about 
1 minute at the same load at rest. Fig. 53 shows the course of adjust
ment at rest (curves 1 a and 2 a) and during contraction (curves 
lb and 2b), the latter obtained from the curves in fig. 54. The 
change in the length of the fibre at rest (fig. 53, curve 2 a) was 
produced by a transient application of an additional load. The 
difference in length at the same tension was retained at rest 
during a relatively long period, i. e. it was reduced to about 60 
per cent in 3 seconds. A tetanic contraction lasting 3 seconds 
reduced the difference in length to only 10 per cent.

The curves for the isotonic and isometric maxima.
It was natural to assume that the curve for the isotonic 

maxima in the length-tension diagram would coincide with the 
curve for the isometric maxima. However, this was only the 
case from load 0 to 0.2 Po, i. e. at a length at which an “isometric” 
contraction was initiated about 30 per cent below the equilibrium 
length of the isolated fibre. Obviously, this was no true isometric 
contraction, the fibre shortening without tension until it was 
straightened out. The range of length from equilibrium to the 
shortest length obtained in contraction corresponds to a stop 
(“anschlag”) contraction. After the fibre had taken up the slack, 
the contraction then proceeded isometrically. The tension for the 
same length was less during stop contraction than in the cor
responding isometric contraction (Reichel 1936, 1938), and there
fore it is not surprising that the “isometric” contraction • at low 
tension coincided with the isotonic. If, at the beginning of the 
contraction, the fibre had been kept slightly compressed in the 
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longitudinal direction to a length below the equilibrium length, 
higher values of tension should have been expected for the libre 
actually under isometric conditions. From load 0.2 Po, the 
tension in isometric contraction for the same length was up to 
50 per cent higher than the tension in isotonic contraction. The 
difference was largest in the range about length 100.

In order to be able to make a comparison as described above, 
it is of course necessary, both for isometric and isotonic con
traction, to wait until complete equilibrium is obtained, i. e. 
constant tension or constant length. In isotonic contraction, the 
presence of possibly undamped inactive series elasticities in the 
muscle fibre are without significance for the course of adjust
ment, since the elasticities retain a constant length, on account 
of the constant load. On the other hand, these series elasticities 
will influence the development of tension in isometric contraction, 
since the contractile elements, in spite of external isometry of 
the fibre, must work against a certain velocity of elongation of 
the inactive series elements during the rise in tension. The 
shortening velocity which arises in the active elements in com
pensation of the lengthening of the inactive elements causes the 
resulting tension to be lower than the truly isometric tension 
would be (cf. force-velocity relation p. 148, 177). A series elastic 
element, therefore, can cause differences in the course of adjust
ment, in isotonic and isometric contraction, but it cannot explain 
the higher stationary value of tension, which was found in 
isometric contraction.

Before the difference in the length-tension dependence found 
for the isotonic and isometric maxima could be considered as 
real, it was necessary to ensure that the difference was really 
due to a peculiarity in lhe behaviour of the contractile sub
stance. In order to exclude the possibility of fatigue and plastic 
elongation, which could have exerted its influence in different 
ways in isotonic and isometric contraction three special series of 
experiments were carried out:

Three successive curves were recorded from the same fibre 
in lhe sequence, isotonic, isometric, and isotonic. A comparison 
between the two isotonic curves permits an evaluation of the 
presence of possible fatigue and plastic yielding as compared 
with the intermediate isometric curve. Experiments on fibres in 
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which the first and the last curves recorded for the isotonic 
maxima coincided, still showed the considerable difference in 
length-tension dependence between isotonic and isometric con
traction.

This difference was also seen in other experiments, in which 
isotonic shortening and isometric tension were recorded alter
nately lor each length at rest; an isotonic control measurement 
at moderate load (0.3 7%) was performed at regular intervals, 
in order to control the possible occurrence of fatigue or plastic 
elongation. As a further control of the possible influence of 
fatigue, which could be expected to be especially marked after 
isotonic contraction, where the initial length even at moderate 
load approached 200, we carried out a series of experiments 
with continuous repetition of a cycle of alternating isotonic and 
isometric contractions. Comparing values of equal tension in 
isotonic and isometric contraction, the corresponding differences 
in length could be determined. The fibre was brought to isometric 
contraction at a low initial length, and an isotonic contraction was 
then initiated at the same tension as that reached in the isometric 
contraction, etc.

By (til these procedures the same result was obtained, that is 
the curve for the isotonic maxima lies considerably below the curve 
for the isometric maxima (fig. 50), and this difference is not due 
to incomplete adjustment, fatigue, or plastic elongation.

The area which lies between the curve for the isometric and 
the curve for the isotonic maxima, can be examined by means 
of stop-contractions, or, as we have done, by means of afterload 
contractions (v. Kries (1880), Sulzer (1930), Hill (1938), and 
Reichel (1936, 1938)). The first phase of an afterload contrac
tion proceeds isometrically up to the point at which the tension 
developed by the fibre is sufficiently high to overcome the ex
ternal load. The fibre then shortens isotonically against the ex
ternal load.

In afterload contractions the length of the muscle was limited 
by means of a stop (n, fig. 2) to, for example, length 115. The 
load required at rest to stretch the muscle to this stop was denoted 
Pr. At loads < Pr the muscle fibre worked isotonically, since it 
had not reached the stop. At loads P>Pr, the muscle was 
stretched to the stop and the tension rose isometrically from 

Dan. Biol. Medd. 21, no.7. 9 
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Pr to P. The fibre then shortened under the load P. When the 
fibre worked at loads varying between Pr and Po, a curve for 
the maxima of the afterload contractions was obtained, the end
points of which were the isotonic point at load Pr and the cor
responding isometric point at load Po at the length determined 
by the stop, i. e. 115. For each fibre length determined by the 
position of the stop there was an afterload curve connecting the 
isometric maximum with a point on the curve of the isotonic 
maxima at a considerably lower length and tension. Thus, it 
can be seen that for different stop lengths, i. e. for different 
values of Pr, there will be described a family of afterload curves 
starting from the isometric maximum and sloping downwards 
to the left (fig. 50) terminating on the curve of the isotonic maxima. 
The curves for the maxima of the afterload contractions are 
approximately linear. Afterload contractions with isometric and 
isotonic contractions as limiting cases thus allow in a well 
defined way a combination of the latter conditions and show 
that there is a continuous transition in length and tension between 
isotonic and isometric contraction.

In evaluation of the difference found between the curves for 
the isotonic and isometric maxima it was important to establish 
whether factors other than the resting length and tension deter
mined the length reached during maximal tetanic contraction. 
During the recording of the curves for the isotonic and isometric 
maxima we have, therefore, inserted release contractions at dif
ferent resting lengths. The fibre was stimulated at a given initial 
length under isometric conditions until tension Po was reached. 
Then the fibre was released during continuous stimulation to 
the same tension which it had at rest. The resulting stabilized 
shortening was considerably less than an isotonic shortening, at 
loads above 0.1 Po (Buchthal 1942).

In agreement with our findings for isotonic and release con
tractions Reichel (1936), using whole muscles, has shown that 
from the same resting length smaller or larger shortenings are 
obtained at the same tension, according to whether the con
traction proceeds isometrically-isotonically (afterload) or iso- 
tonically-isometrically (stop).



Nr. 7 131

Texture and elastic locking.
From the same initial length and tension, different values are 

thus obtained for the final length attained in contraction, according 
to the length-time or tension-time course, which the fibre has un
dergone during the contraction. The explanation of the differences 
in the length-tension diagrams under different conditions is to 
be found in the previously described elastic locking (Buchthal 
1942). However, on the basis of the present experiments the 
textural pattern is assumed to be the site of the locking in the 
structure and not—as previously assumed—the minute structural 
elements themselves.

The random cross-linking of chains establish the condition 
that part of the contractile substance will not be under load 
in the fibre at rest (slack). Upon activation the fibre changes in 
two ways: (1) the minute structural elements begin to shorten, 
and (2) the stiffness will increase. The increased stiffness is an 
expression of an alteration of the minute structural pattern pro
duced by changes in its elements. Part of the resulting increase 
in stiffness is localized to the minute structural elements them
selves and part to the texture in which they are organized. The 
quick shortening which will occur in the chains not under tension 
will cause a continuously increasing fraction of the structure to 
participate in bearing the load, thereby producing an increased 
stillness. Finally, because of the better alignment in the structure, 
the probability of new points of entanglement to be formed 
will increase. Both factors contribute to the rise in stiffness. The 
more rigid textural pattern will be formed relatively soon during 
the development of shortening and will limit the latter. Thus, 
in order to shorten appreciably, it is necessary for the fibre to 
be able to contract considerably before the pattern is finally 
established. In isotonic contraction a fibre with a load of 0.7 
(fig. 50) will shorten from length 200 to length 140. A corre
sponding tension in isometric contraction is reached at length 
85. The reason for the smaller shortening under isotonic con
ditions is the more rigid textural pattern which arises during 
shortening. This limits the shortening to length 140. The even 
smaller shortening observed in release contraction as compared 
with that obtained in isotonic contraction at the same tension, 

9*  
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can be explained by the relatively long lime allowed lor the 
isometric contraction to persist before release. The rigid texture 
characteristic of the contracted state in release contraction be
comes established at the high initial length, while during an iso
tonic contraction this happens when the libre is in the process 
of attaining a smaller length. The textural pattern which is estab
lished during an isometric contraction may be partially broken and 
then reformed at a longer length under the influence of vibrations 
with > 2 per cent length amplitude. Thereby the extra tension 
is reduced. This yielding in the texture was seen in the experi
ments illustrated by fig. 28 when high frequency vibrations 
(100 c.p.s.) were applied and also during development of the 
isometric tension when low frequency vibrations were imposed 
on the fibre (5—10 c.p.s., Buchthal et al. 1944a). Therefore, in 
vibration experiments it will be advisable to apply as low a 
vibrational amplitude as possible.

The experiments hitherto described all showed that the 
stationary tension for the same length obtained in contraction 
depended on the previous experimental treatment both as re
gards tension and length at rest and during contraction (cf. Bi.ix 
1895 a and b). For the same length the highest tension was ob
tained in isometric contraction.

In isotonic contraction the tension was lower and the after
load contractions which contained both an isometric and an 
isotonic phase lay in between. In release contraction, defined as 
release during stimulation from isometric contraction to the same 
tension as al rest, the tension of contraction for the same length 
was even lower than in isotonic contraction. ¡

Comparison between length and tension in maximal 
contraction of the single fibre and whole muscle.

Shortening in a whole muscle varies considerably with the 
equilibrium length of its fibres, and with the geometric arrange
ment of the fibres in relation to the direction of pull of the 
muscle. The shortest relative length which could be reached 
during contraction did not differ appreciably from that obtained 
in the single fibre.

i
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As regards the specific tension Casella (1951) in this labo
ratory has carried out a systematic comparison between the max
imal tension developed in the fibre and in the respective muscle 
(Table 10). As seen from the table force X length per g. weight 

qXLq/M, Hill 1950 b) for the semitendinosus was ol the same 
order of magnitude as Hill found for frog and toad sartorius. 
P0XL0/M for the anterior tibial muscle is considerably greater, 
a finding which can be understood when considering the bipen- 
nate fibre arrangement of this muscle, whereby the length of the 
muscle no longer represents a measure of the length of the fibres. 
With PqXLq/M as a basis for calculation the specific force developed 
in a whole muscle as compared with that of the isolated fibre is 
approximately 40 per cent lower. In the case of the isolated fibre, 
measurements of the cross sectional area could be performed 
with sufficient accuracy and, therefore, the force was determined 
directly per cross sectional unit. In the table values are also given 
for lhe specific tension of whole muscle calculated on the basis of 
a direct measurement of cross section. These values were about 
35 per cent lower than those arrived at by calculating specific 
force from Po X Lo/M. This difference is obviously caused by de
viations from a cylindrical shape which was not taken into 
account when measurements were made of the maximal diameter 
only.

The difference between the specific tension in lhe single fibre 
and the whole muscle (calculated from PoxLo/M) is so large that 
it cannot be explained merely on the basis of the different equili
brium lengths of the different fibres and the subsequent dif
ferences in degree of stretch. Moreover, the small spread found 
for the mean values of the tension excludes the possibility that 
the difference could be due to an accidentally higher activity in 
some of the single fibres examined. Neither can variations in 
the cross sectional area in that part of the muscle (ah. |) where 
the fibres can move freely during stretch without hindrance 
from the tendon sheath, account for the difference. This part of 
the muscle is approximately cylindrical. The cause of the dif
ference must mainly be the fact that only part of the cross 
sectional area of the muscle consists of active substance. Although 
the fibres are plastic, they are not tightly packed, and the inter
spaces are filled with connective tissue, blood-vessels and lymph
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vessels, nerves, and tissue fluid. A comparison between the specific 
birefringence of the single fibre and the whole muscle can give a 
measure of the amount of active substance. The mean value for 
the birefringence of the isolated fibre was 2.01 ± 0.048 X 10“3 
(Buchthal and Knappeis 1938)1and for large bundles from semi- 
tendinosus muscles consisting of 100—200 fibres 1.41 x 10 ’with a 
minimum value of 1.23 X 10— 3 and a maximum value of 1.65 X 10—3. 
The specific birefringence was thus 30 per cent less in large 
cylindrical bundles than in the isolated fibre, indicating a cor
respondingly smaller amount of active substance. The dif
ference found by measurements of birefringence was twice as 
large as the values found by Boyle and Conway (1941) for the 
volume of the intercellular space by studying the distribution of 
inulin (13 per cent). This discrepancy must be assumed to be 
an indication that part of the inactive substance in muscle cannot 
take up inulin.

These experiments show that the considerable difference in 
Po per unit area for whole muscle and single fibres can be ex
plained chiefly by the contribution of the inactive substance to 
the cross section. The passive substance reduces the specific Po 
for whole muscle in two ways: 1) by contributing as an impor
tant factor to the cross sectional area and 2) by part of it acting 
as series elasticity to the fibres. In spite of external isometry, con
traction of the fibres may thus be accompanied by a shortening. 
Owing to this shortening the fibres cannot develop their maximal 
force (see elastic locking p. 131).

The higher specific tension which apparently was found in 
an anterior tibial muscle as compared with the semitendinosus 
muscle, in spite of the fact that the single fibres in both muscles 
developed the same maximal tension during contraction, was 
doubtless due to the difference in the geometric arrangement of the 
fibres. The physiological cross section in the anterior tibial is 
larger than the anatomical, while in the semitendinosus this dif
ference is considerably less. It is, therefore, more appropriate 
to compare the single fibre and whole muscle in the case of a 
semitendinosus than in that of an anterior tibial.

When the fibre is stimulated at equilibrium length, it can

1 Regarding the correction for difference in diameters see Höncke (1947) 
and Knappeis (1948). 
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shorten without tension to about 60 per cent of the equilibrium 
length. This shortening apparently is less than that found by 
Hill (1949 e) for whole muscles, which is reported in his papers 
to be 40 per cent of the “natural length’’. The difference, however, 
presumably lies only in the definition of the length unit used. 
“Natural length’’ corresponds to length 135—165 in our length 
units, and in these units the shortening found by Hill therefore 
corresponds to a length of contraction of 54—66. Ramsey and 
Street (1940) found a reversible shortening down to a length 
of 60 to 70 per cent at the “resting length’’. Al larger shortening 
they found irreversibility (<5 state). In the present experiments we 
have obtained reversible shortenings amounting to a maximum 
of 50 per cent at the equilibrium length, which corresponded to 
a shortening to length 40 in Ramsey’s units. We have not found 
a <5 state (for a critical evaluation of the ô state see Buchthal 
1942 and Hill 1949 e).

A considerable difference was found between single fibres 
and small bundles on the one hand, and whole muscles on the 
other with regard to the shortest initial length at which a con
traction could be initiated. If a whole muscle was placed so that 
the distance between the tendon ends was about half of the 
natural length of the muscle, the latent period, which initially 
was long (approximately half of the duration of the shortening 
period) decreased successively at repeated twitches and values 
were obtained equal to those found in the straightened muscle 
(Hill 1949 e). This is interpreted as a disappearance of slack, 
i. e. an adjustment of the fibres to a shorter length than the muscle 
originally had in the unloaded state. This experiment cannot be 
performed on the single fibre. When the fibre contracts from a 
tensionless state it straightens after the cessation of stimulation 
almost as quickly as a fibre under load. In the length range 
100—200 no significant shortening of the latent period was found 
in the single fibre with increasing load.

The fundamental difference between whole muscle and the 
fibre lies in the fact that the former can be “compressed’’ and 
obtain lengths below 100 without curling or folding to any con
siderable extent. In the presence of many parallel fibres a curling 
is improbable, since during shortening it would make necessary 
a larger amount of work of deformation than is the case when 
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the fibres can be compressed. In the single fibre a decrease of 
the distance between the ends of the fibre to a length below the 
equilibrium length will cause curling without real shortening in 
the minute structure. A comparison can be made with the de
formation which would occur on compressing a rubber stopper, 
and the curling which arises when a thin rubber fibre cut from 
the same stopper is compressed. The finding of a constant 
duration of the latent period in the isolated fibre independent of 
the degree of stretch between lengths 100 and 200 indicates that 
slack in a fibre is never complete, i. e. there are always a number 
of elements which are straightened out. On the other hand, in 
a whole muscle, in which there is a possibility for “compression”, 
there can occur complete slack which manifests itself by an in
crease in the latent period.

As previously mentioned, the intrinsic resistance developing 
in the muscle texture during contraction decreases with de
creasing initial length (cf. elastic locking p. 131, 155). Therefore, 
it seems natural to assume that in a muscle which has been 
“compressed” at rest, the intrinsic forces developing at the 
transition from rest to contraction will be less than in a muscle 
which contracts from equilibrium length. Since whole muscle in 
its resting state is compressible to length below equilibrium length 
the elastic aligning forces will be less than in a fibre. Therefore 
better conditions will exist in the whole muscle for the hysteresis 
in the texture and in the connective tissue to maintain the muscle 
tensionless in a shortened state.

The course of stress-relaxation when
quick changes in length are applied to the tetanically 

contracted fibre.
When a tetanically contracted fibre was suddenly stretched, 

the change in tension as a function of time proceeded differently 
than at rest, both during the rise in tension and during the ad
justment. While the tension in the resting fibre following a quick 
stretch increased with rising gradient, the increase in tension 
following a <pdck stretch applied during contraction had an 
S-shaped course (fig. 21). The increase in length applied was 
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approximately 13 per cent of the equilibrium length and its final 
value was reached within 1.2 msec. The difference in the initial 
course of tension at rest and during contraction can be clearly 
seen when the increase in tension is plotted as a function of the 
elongation (fig. 22). At rest half of the additional tension is 
reached after 1 msec., at 8.5 per cent elongation. During con
traction half of the additional tension was reached after 0.5 msec., 
at an elongation of less than 1 per cent. Referred to the same 
length the increase in transient tension was larger than at rest 
if the extra tension in contraction was low, while the reverse 
was true when the extra tension was high.

The course of the initial part of the increase in tension was 
always steeper during contraction than at rest, corresponding to 
the higher dynamic stiffness during contraction which was found 
when the stiffness was determined with vibrations of small am
plitude. The finding of a smaller total rise in the tension during 
high tensions of contraction than at rest indicates the occurrence 
of a sudden yielding when the extension had reached a certain 
critical amplitude (comp, the S-shaped tension-time diagram, 
fig. 21 and the length-tension diagram with falling gradient, 
fig. 22).

When the stretch transient had attained its final value, tension 
first began to fall quickly and then more slowly. After about 
1 msec, the tension reached a minimum value and then rose 
towards a new maximum within the next 5 msec. This secondary 
rise in tension was not due to an incomplete tetanic contraction 
and was most pronounced when extra tension was high. A 
possible explanation of this course is that part of the contractile 
elements are inactivated by the sudden change in length (yielding) 
and thus contract again under the influence of the continuous 
stimulation.

During quick release the initial course of the tension was 
equal to that fourni in the resting fibre and the secondary rise 
in tension characteristic of quick stretch was not observed. At 
release amplitudes of more than 2 per cent of Lo, the tension 
fell to zero.
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The effect of the frequency of stimulation and of a limited 
number of successive stimuli.

The contractions in the experiments described above were 
maximal tetanic contractions. The strength of the stimuli was 
3—7 times the threshold value, at a stimulation frequency of 25 
per sec. and an impulse duration of 10 msec, at 0° C. As is well 
known, the size of the shortening at maximal stimulation varies 
with the number of stimulations per second and with the total 
number of impulses (duration of stimulation). Fig. 55 shows the 
maximal shortening as a function of the frequency of stimulation 
from a twitch to a tetanic contraction produced by a stimulation 
frequency of 30 per sec. which gave optimal shortening. Even 
at an impulse frequency of 1 per sec. at 0° C. a shortening could 
be obtained which was halfway between the peak of shortening 
in a twitch (50 per cent of Lo at 0.3 Po) and the maximal short
ening in a tetanic contraction (90 per cent of Lo at 0.3 Po). In 
previous experiments performed under isometric conditions an 
extra tension halfway between that developed in a twitch and in a

0 5 10 15 20 25 30
sfr/rw/z/sec.

Fig. 55. Shortening as a function of stimulation frequency. Constant load 0.3 7’0. 
Duration of the single stimulus 5 msec. 0° C.

ordinate: shortening in per cent of Lo.
abscissa: number of stimuli per second, 0 indicates single stimulus.

tetanic contraction was reached at a frequency of 12 impulses 
per sec. (20° C., Buchthal 1942) and in mammalian fibres at a 
frequency of 40—45 impulses per sec. (37° C., Höncke 1947). The 
fact that half of the difference between twitch and tetanic con-
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Fig. 56. Shortening as a function of time in an isotonic contraction, by 1 stimulus 
(curve 1), 2 stimuli (curve 2), 10 stimuli (curve 10), and by tetanic stimulation 
(curve Tet), distance between stimuli 30 msec. Curves 2a-5a give the net increase 
in shortening caused by the second to the fifth stimulus, curve 10 a the net increase 

for the tenth stimulus. Load 0.2 /%. 0° C.
ordinale: shortening in per cent of Lo.
abscissa: time in seconds (0 corresponds to the end of the latency period).

traction was reached at considerably higher frequencies, when 
the contraction occurred at high temperatures, must be due to 
the large temperature dependence of the relaxation.
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In experiments with constant stimulation frequency of 30 
per sec. the influence of the duration of stimulation was in
vestigated. It was varied from single stimuli to tetanic stimulation 
lasting 10 sec. Fig. 56 shows the effect of 1 stimulus (curve 1), 
2 stimuli (curve 2), 10 stimuli (curve 10), and tetanic stimulation 
(curve Tet) as a function of time in seconds at 0° C. Zero marks 
the end of the latent period. The increment in shortening produced 
by each successive stimulus is given for the range 2—10 stimula
tions in curves 2 a—10 a. Curve 4a, for example, shows the dif
ference in shortening as a function of time obtained by 3 and 
4 stimuli. Note that the stimuli are always separated by 30 msec, 
in time. The zero point for these curves is referred to the time 
for the preceding stimulus. The effect of the single stimulus de
creased with increasing number of preceding stimuli. The peak 
of shortening for 2—10 stimuli was 0.3 to 0.4 seconds later than 
for the twitch, i. e. 60 to 100 per cent later than the time for 
the maximum of shortening in a twitch.

Stimulation of longer duration caused a further shortening. 
A single stimulus at load 0.2 I}0 and 0° C. thus produced a 
shortening of 50 per cent, and a 4 sec. tetanic stimulation, a 
shortening of 120 per cent of the equilibrium length of the libre.

The decreasing mechanical effect of successive stimuli is con
sidered to be caused primarily by the decrease in the number 
of contractile elements which can still be activated. Moreover, 
the locking develops increasingly with the duration of stimu
lation and, therefore, likewise will limit the increment in 
shortening. The fact that the maximal shortening released by the 
second and subsequent stimuli occurred later than the time of 
the maximal shortening in a twitch can be understood from the 
following considerations: A certain maximal velocity of activation 
which externally is indicated by the initial shortening velocity, 
cannot be exceeded under given conditions of load and tempera
ture. Upon release of a subsequent stimulus (for example the 
second stimulus) “the stimulation factor” will already be present 
and the energy liberated by the second stimulus will only be able 
to exert its influence gradually as the effect of the first stimulus 
no longer maintains maximal shortening velocity. The effect of 
the stimulus 2 will thus be delayed in relation to the time at 
which it is released and can be “stored” until the mechanical 
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conditions for its use are present. In a later section experiments 
are described indicating that a transient change in the mechanical 
conditions can cause storing of the effect of stimulation as well 
(cf. p. 161).

In addition to its effect on the shortening, the duration of the 
stimulation also affects the course of relaxation, an effect which 
is already known from experiments on whole muscles (Hartree 
and Hill 1921) and its effect on single fibres is described in a 
later section (p. 183).

Isotonic twich.
Isotonic shortening during a twitch at 0° C., expressed in per 

cent of the equilibrium length, is given as a function of the load 
in fig. 57. With increasing load the maximum in shortening de
creased more rapidly than in tetanic contraction. At a low load 
and 0° C. the shortening in a twitch amounted to up to 60 per 
cent of the equilibrium length, and to 50—80 per cent of the

Fig. 57. Maximum shortening and shortening velocity in tetanic contraction and 
in a twitch as a function of load. 0° G.

left ordinate: shortening in per cent of Lo. 
right ordinate: maximal shortening velocity in Lo per second. 
abscissa: load in units of Po.

S At a load of 0.5 Po the shortening
fell to 20—40 per cent of the tetanic shortening.

Early investigations (cit. Evans 1947) on whole muscles under 
isometric conditions showed a decrease in the extra tension in a 
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twitch with rising température, while the extra tension in tetanic 
contraction increased. Under isotonic conditions an increasing 
shortening was found with rising temperature in these ex
periments, both in tetanic contraction and in the twitch. However, 
this increasing shortening in the twitch has been assumed to be 
caused by inertial forces in the recording system.

In the present experiments on single fibres and small bundles 
of fibres the inertia of the recording system was so small that 
it did not cause any appreciable distortion of the shortening or 
the shortening velocity, despite the relatively small forces con
cerned.

In the isolated fibre the shortening in a twitch varied con
siderably less with the temperature than the shortening in tetanic 
contraction. Fig. 52 and fig. 60 show the shortening as a function 
of load at 0 and 24° or 26° C. in both cases. Dependent upon the 
load the temperature coefficient of the shortening in the twitch 
may be either positive or negative in the same fibre. At a low 
load the shortening always increased with decreasing temperature. 
In tetanic contraction increasing shortening was found with in
creasing temperature over the whole range of loads.

The difference found in temperature dependence in the 
twitch and the tetanic contraction is due to the fact that a sta
tionary value for the shortening is not obtained in the twitch. 
The high temperature dependence of the relaxation velocity can 
partly explain the paradoxical difference in temperature de

Fig. 58. Two twitches released with an interval of 2.2 seconds. Constant strength 
of stimulus. 0° C., 0.15 Po, Lo = 5 min. Curarised fibre. Note the enhancement of 

shortening and duration of the second contraction.

pendence between the twitch and the tetanic contraction. In a 
later section a correlation will be discussed between the size of 
the shortening in a twitch and a tetanic contraction and the 
velocities of shortening and relaxation (see p. 188).



144 Nr. 7

In addition to load and temperature, the shortening in a twitch 
is affected by a preceding contraction (Hartree and Hill 1921 
for whole muscles and Ramsey and Street 1941 for single fi
bres, isometric conditions). The isotonic twitch showed increased 
shortening for a subsequent twitch, i. e. the first, second, and 
third twitch showed a gradual increase in the peak of shortening 
(fig. 58). This effect was most pronounced at a low load, when 
the velocity of relaxation had low values. The increased shortening 
was characterized by an increase in the velocity of shortening, 
a reduced velocity of relaxation, and an increased duration of 
contraction.

Shortening as a function of time.
Apart from the maximum shortening as a function of the 

external conditions as discussed above, the mechanical response 
of the fibre is characterized by the lime course of the shortening 
or the tension. In an isotonic twitch the shortening rose almost 
linearly during the first three quarters of the change in length 
(fig. 59), and at 0° C. the maximal shortening was reached 0.4 
to 0.7 seconds after the end of the latent period. The time for

Fig. 59. Isotonic twitches with a load of 60 dynes (upper curve) and 120 dynes 
(lower curve). Shortening 56 per cent (upper curve) and 30 per cent (lower curve). 
po = 800 dynes, Lo = 9 mm. Maximum shortening 0.65 sec. after the end of the 

latency period. Stimulus at arrow. 0° C.
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the maximal shortening varied up to 30 per cent with the load. 
At low and high loads the maximum occurred earlier than at 
intermediate loads of 0.3 to 0.5 Po (tig. 60 and fig. 61). At 0° C. 
the whole contraction lasted 1 to 1.5 sec. In tetanic contraction 
at the same temperature half of the maximum shortening was 
reached 0.1 to 1 sec. after the end of the latent period, depending 
on the size of the load. Fig. 60 shows the course of shortening

Fig. 60. Course of shortening in isotonic twitches and tetanic contractions. 
Upper curves 24° C., lower curves 0° C. The values of the maximal shortening 
velocity (V) are given on each curve. The figures at the arrows denote the different 

loads, 0.05, 0.25 and 0.50 Po.
ordinate: shortening in per cent of Lo. 
abscissa: time in seconds.

in a twitch and a tetanic contraction for the same fibre at three 
different loads and at 0° and 24° C.

A comparison between the time course of the twitch under 
isotonic and isometric conditions showed, in agreement with the 
findings for whole muscles (Fick 1871, 1882, Schenck 1895, 
Fenn 1936, Hill 1949 d), that at all the loads examined the 
peak of tension was obtained before the peak of the shortening. 
In the single fibre this time difference on an average amounted 
to 200 msec. (0° C.). An example of the course of the tension 
and the shortening for the same fibre is given in fig. 61. The 
fibre was stimulated at different initial loads, alternately under 
isotonic and isometric conditions. It is seen from the figure that 
the shortening still proceeds during part of the relaxation phase

Dan. Biol. Medd. 21, no. 7. 10
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of the isometric twitch. An analysis of the cause for this time 
difference based on the shortening velocity and of its dependence 
on the load is attempted in a later section (see p. 172).

Fig. 61. Isotonic and isometric twitches alternatively recorded from the same muscle 
fibre.

The five lower curves represent length in isotonic contraction and the five upper 
curves tension in isometric contraction as a function of time. The figures on the 
lower curves denote the isotonic load and those on the upper curves the initial 

tension both in units of Po. 0° C.
left ordinate: isometric tension in dynes, 200 dynes = Po. 
right ordinate: length in per cent of Lo.
abscissa: time after stimulus in msec.
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The shortening velocity.
Since the absolute velocity with which a fibre shortens de

pends on its length, the relative velocity (V) is used as a measure 
of the development of the shortening:

y,  shortening velocity in cm./sec. 
equilibrium length in cm.

The initial shortening velocity changed characteristically with 
variations in load and temperature. For whole muscles this 
dependence was first investigated systematically by Kaiser (1896), 
and Hill (1938, 1939) used the shortening velocity as a func
tion of the load as a basis of an analysis of the dynamic pro
perties of the muscle during contraction.

In the single fibre the shortening velocity reached its maximum 
immediately after the end of the latency period and, as previously 
mentioned, was approximately constant at low and moderate 
loads until about 60—80 per cent of the shortening was reached. 
At a high load the length, over which the maximum velocity was 
constant, decreased. In the twitch and the tetanic contraction the 
shortening coincided at different loads at 0° C. over a time interval 
of 0.2 sec. after the end of the latent period. Fig. 62 shows an 
example of the maximal shortening velocity at different loads 
during alternating twitch and tetanic contraction. The frequency 
of stimulation in a frequency range of 0.5 to 60 stimuli per sec. 
did not affect the initial velocity of shortening, provided the 
stimulation was always maximal.

fhe abrupt development of shortening has been considered 
to indicate that at the end of the latent period the contractile 
mechanism is already fully active (Hill 1949d, Abbott and 
Ritchie 1951b). However, the fact that the shortening velocity 
quickly attains its maximal value, in our interpretation can 
only indicate that the rate and not the degree of activation 
quickly attains a maximum. The steep beginning of shortening 
must actually be considered the result of an interaction between 
shortening caused by contraction and elongation caused by the 
latency relaxation1 (Sandow 1944, Abbott and Ritchie 1951a).

1 The existence of a latency relaxation in the isolated fibre has recently 
been demonstrated by Mauro (1951).

10*
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The resulting course of shortening is delayed by this initial 
elongation. Thereby, using a sensitivity which allows to record 
the peak tension of the twitch, the course of shortening appears 
very abrupt.

In the initial phase of the shortening, especially at a high load,

• tetanic contraction
o twitch-
X re/o-xatt'on .

Fig. 62. Maximal shortening velocity in isotonic twitches and tetanic contractions 
and maximum relaxation velocity in tetanic contractions as a function of load. 0° C. 

ordinate: velocity in Lo per second. 
abscissa: load in units of Po.

a maximal velocity may occur at the beginning of the shortening, 
which exceeded the later constant velocity. 'Phis deviation was 
not caused by the inertia of the recording system, since it extended 
over an interval which was at least 10 times longer than the 
oscillation period for the recording system plus fibre.

As a function of the load, the shortening velocity in the fibre 
decreased with increasing load and the course of the curve in 
the range 0.03—1.0 Po was of the same type as that described 
by Hill (1938) for whole muscles. However, at loads below 
0.03 Po, the course of the force-velocity relation for the fibre 
differed from that found in whole muscles, since the curve had a 
maximum at 0.02 Po ('fable 11). The lower velocity, which occur-
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p„ = 300 mA total (each fibre half = 150 mA) = 1350 dynes (2 fibres) 1 mA = 
4.5 dynes.

Equilibrium length of the 2 fibres = 6 mm ; effective Lo in the apparatus = — = 3 mm.

Table 11.
Force-velocity relation.

Load mA Load dynes Load in units of Po Relative V

2.0 9.0 0.007 2.53
5.0 22.5 0.017 2.92

20.0 90.0 0.067 2.41
60.0 270.0 0.200 1.62

100.0 450.0 0.333 1.03
150.0 675.0 0.500 0.63
200.0 900.0 0.667 0.41

red at loads near the equilibrium length, is probably caused by the 
incomplete alignment in the fibrillar structure and corresponds 
to the lesser shortening, which was found during contractions 
from equilibrium length as compared with, for example, con
traction occurring at lengths 110—120. In experiments on whole 
muscles great difficulty will be encountered in the analysis of 
correspondingly low loads. The longer equilibrium length of the 
whole muscle causes higher absolute velocities and hence larger 
inertial forces than in the single fibre, and these may distort the 
initial course of the curve. In the first phase of the movement 
the retarded reaction of the recording system will cause a sum
ming up of elastic energy which is later released. Thereby the 
system will be accelerated to a velocity which exceeds the natural 
shortening velocity. In addition, the inhomogeneous internal state 
of tension in the muscle, due to the different equilibrium lengths 
of the fibres and the connective tissue, will conceal the initial 
decrease in velocity. However, the decrease found in the single 
fibre at low loads makes it doubtful whether it is justified to 
extrapolate the velocity in force-velocity diagrams for whole 
muscles to load zero (Hill 1938, 1939, Ralston et al. 1947, 
1949).

The relative velocities found in the single fibre or in small 
bundles from the semitendinosus muscle at loads above 0.03 7% are 
considerably higher than those found for the corresponding 
whole muscle (fig. 63). This is true both of semitendinosus and 
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sartorius muscles from the same animal, examined with the 
same system as that used for experiments on the single fibre. 
The force-velocity diagrams found in these experiments for 
sartorius muscle showed agreement with those found by Hill 
(1938, 1939) for the same muscle. The cause of the difference

Fig. 63. Maximal shortening velocity in a whole muscle (sartorius, semitendinosus) 
and the isolated fibre of the same semitendinosus. Average of 10 muscles. 0° C. 

ordinate: shortening velocity in Lo per second. 
abscissa: load in units of Po.

between libre and whole muscle lies presumably in the distri
bution of the different fibre lengths and in the resulting non- 
uniform state of stretch of different fibres in a whole muscle. 
This is accounted for quantitatively in a later section (Appen
dix III., p. 298).

Shortening velocity during different external mechanical 
working conditions for the muscle fibre.

Since the tension developed in contraction for a given length 
to a large extent depends on the mechanical conditions under 
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which the contraction proceeds, it was of interest to investigate 
whether the relative shortening velocity is likewise affected by 
mechanical factors other than the load. We have, therefore, 
compared the shortening velocity in isotonic contraction with 
1) the velocity during afterload contractions, 2) the shortening 
velocity which occurs when the fibre is allowed to shorten

Fig. 64. Force-velocity relation during afterload from length 114 (Lo = 100) and 
in isotonic contraction. Isolated fibres, 0° C. 

ordinate: shortening velocity in Lo per second.
abscissa: load in units of Po.

from its isometric tetanic maximum against a given load, and 
3) the shortening velocity following a sudden change in load 
applied during a twitch.

1) Shortening velocity as a function of load during afterload 
and isotonic contraction is shown in fig. 64. During afterload the 
velocity is always lower than under isotonic conditions. In the 
load range between 0.1 and 0.5 Po the difference between after
load and isotonic contraction was about 20 per cent in the 
example shown in fig. 64, and may amount to a maximum of 
30 per cent. The difference between the shortening velocities 
under these two conditions, though statistically significant, is
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/ength
Fig. 65. Shortening velocity as a function of the length attained in the course 
of isotonic tetanic contraction (full lines) and initial shortening velocity as a 
function of initial length in afterload contraction (broken lines). 0° G. The figures 

on the curves denote the external load in units of Po.
ordinate: shortening velocity in units of Lo per sec.
abscissa: length in per cent of Lo (in isotonic contraction it represents the length 

attained during shortening; in afterload contraction it represents the 
initial length determined by the position of the stop).

quite small in comparison with the considerable reduction found 
in the change in length during afterload contraction as compared 
with isotonic.

Shortening velocity as a function of shortening in isotonic con
tractions at four different loads is seen in fig. 65. The dashed 
lines represent the initial shortening velocity in afterload con
tractions at the same load as a function of the initial length. In 
view of the finding that the force-velocity relation is valid during 
the major part of (he course of shortening (see below), it seems 
justified to compare the initial velocity in afterload contractions 
with the velocity at the same length and load in isotonic con
traction. Referred to the same length and load, the velocity in 
isotonic contraction is less than the velocity in afterload con
traction, while the reverse is the case of the initial velocities.
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2) The shortening velocity during release from isometric tetanic 
contraction.

The difference found in the shortening velocity during isotonic 
contraction and afterload contractions may be caused by the 
differences of the initial length at rest in these conditions or by 
the different initial phase of contraction where, during afterload 
contractions, the fibre develops isometric tension until the 
shortening begins. In order to investigate the possible effect of this

Fig. 66. Shortening velocity during afterload contraction (curve a) and release 
from isometric tetanic contraction (curve b). Identical load (0.15 Po) and initial 
length (L = 150). 0° C. t0 indicates the start of stimulation in both afterload 

and isometric contraction, tY the start of release, 0.8 seconds after t0.

isometric phase on the shortening velocity at a given initial 
length, the afterload contraction was compared with a con
traction in which the length was kept constant until Po was 
reached. Then the fibre was allowed to shorten against the same 
load as that applied during afterload. In the example shown in 
fig. 66 the shortening velocity during afterload contraction 
(curve a) at load 0.15 Po and 0° C. amounted to 1.25 L0/sec. On 
release from the isometric tetanic maximum under the same 
load the velocity was 1.37 L0/sec. This velocity was determined 
over an interval of 0.15 sec. after the elastic hump, which 
occurred when the fibre was released from isometric contraction. 
The change in length, corresponding to the hump which amounted 
to 4.5 per cent of the equilibrium length of the fibre at rest (Lo) 
was probably not entirely completed during this interval of time. 
Assuming that the hump was caused by a series elasticity of 
the same dynamic properties as the resting fibre, it would give 
an increase in the shortening velocity of 0.08 Lo per sec.1 The

1 The ratio between the initial change in length and the change in length 
which occurred between 20 and 140 msec, amounted to about 0.2 at large variations 
in length at rest (see transient experiments, Table 2). Therefore, at an initial change 
in length of 4.5 per cent the change in length between 20 and 140 msec, is about 

„ 0.009 La0.9 per cent. This corresponds to a mean velocity of - -------- - = 0.075 L0/sec. 
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shortening velocity in the active elements therefore is 0.08 Lo 
per sec. less than the directly measured velocity, i. e. 1.29. Thus, 
the corrected shortening velocity was approximately of the same 
order of magnitude during afterload and during release from 
isometric contraction. Therefore, the results of these experiments 
indicated that the isometric phase in an afterload contraction 
can scarcely be responsible for the lower velocity of shortening 
found under these conditions as compared with isotonic con
traction, and, moreover, the difference in velocity must be 
attributed to the different initial length from which these con
tractions are initiated.

On the other hand, it must be kept in mind that the amount 
of shortening although dependent upon the initial length was to 
a large extent a function of the isometric phase which preceded 
the shortening (cf. p. 130). The change in the mechanical working 
conditions of the fibre, which at the same load caused large changes 
in the stabilized length of contraction, thus gave only small or no 
changes in the initial relative shortening velocity of the fibre. 
The cause of this difference must be sought in the previously 
described “elastic locking’’ of the contractile substance. It gives 
rise to different stabilized lengths in contraction initiated under 
different conditions, but it does not affect the shortening velocity 
until a certain deformation in the structural pattern of the fibre 
has taken place, i. e. after a certain shortening has been reached.

In order to obtain some idea of the size and course of 
the internal tension which arises in the structure during “locking” 
the progressive shortening during development of an isotonic 
tetanic contraction is treated from the following point of view:

During the development of an isotonic tetanic contraction 
the shortening velocity decreases. This decrease may be caused 
by an internal resistance against the shortening which arises by the 
elastic “locking”. During the isotonic contraction the initial length 
is determined by the load (i. e. the length-tension diagram of the 
resting fibre). By the introduction of an afterload (cf. p. 129) it is 
possible at a given load by means of the adjustment of the stop
screw (fig. 2, n) to vary the initial length between the length at 
rest and the length during isometric contraction at the same 
load. Thus, the initial shortening velocity could be examined 
at the same load as a function of the initial length. In the very 
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first phase of contraction the elastic locking is assumed still to 
be of subordinate importance and the external load therefore 
corresponds to the load acting on the contractile elements. 
Hence, the initial shortening velocity in afterload contractions 
represents the “pure" velocity which arises for a given external 
load. Referred to the same length and load the shortening velocity

Fig. 67. Internal tension as a function of time during development of the isotonic 
tetanic shortening calculated from the data in fig. 65. 0° C. 

Different external loads (0.1 to 0.6 Po). 
ordinate: internal tension in units of Po.
abscissa: time in seconds.

in isotonic contraction decreases with increasing shortening as 
compared with the “pure” velocity (fig. 65). This difference in 
velocity is attributed mainly to the internal mechanical re
sistance which arises by the change in the texture (elastic locking). 
In the example given in fig. 65 we see that an isotonic con
traction was released at load 0.2 7% from length 171 and had 
an initial velocity of 1.14 b0 per sec. When shortening had pro
ceeded for about 0.8 sec. to length 108, the velocity had de
creased to 0.39 Lo per sec. At the same load and at length 108 the 
initial shortening velocity in an afterload contraction was 0.79 Lo 
per sec. In an afterload contraction a velocity of 0.39 Lo per sec. 
was obtained at twice the load, viz 0.4 Po. Supposing that the 
relation between shortening velocity, load, and length is not 
essentially changed by a duration of the contraction of 0.8 sec., the 
difference in shortening velocity indicates an internal resistance 
developed during shortening of the order of magnitude of 0.2 Po- 
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The assumption that the force-velocity relation remains unaltered 
by the duration of contraction is supported by the experiments 
illustrated in fig. 66.

Fig. 67 shows the internal tension in the contractile elements 
as a function of time estimated on the basis of the difference be
tween shortening velocity in isotonic contraction and the initial

shortening m per cení
Fig. 68. Calculated internal resistance against shortening during the development 

of an isotonic tetanic contraction as a function of the shortening. 0° C. 
External load 0.1, 0.2, 0.4, and 0.6 7%.

® indicates the internal tension after a shortening of 0.63 second. 
ordinale: internal resistance in units of Po.
abscissa: external shortening in per cent of Lo.

velocity in afterload contraction. The internal structural re
sistance, i. e. the tension in the contractile elements minus the 
external tension, as a function of shortening is given in fig. 68. The 
specially marked points denote the size of the internal resistance 
at different initial loads at a given time (0.63 sec.) after the start 
of shortening. In spite of the decrease in shortening the re
sistance is higher at high loads than at low loads. For example, 
at load 0.4 Po it is twice that of load 0.1 Po. This difference 
indicates an increased tendency to locking with increasing load, 
produced by lhe decreasing cross-section of the fibre and tighter 
packing of the minute structural elements on the one hand and 
a longer time necessary to give a certain shortening on the other.

At 0° C. the internal resistance arising during isotonic tetanic 
shortening 0.5 sec. after the start of stimulation corresponds to one 
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third of tlie initial load. As the maximum of shortening in a 
twitch occurs approximately 0.5 sec. after the stimulus, the upper 
limit of the internal resistance counteracting shortening in a 
twitch will not exceed 30 per cent of the initial load.

In an equivalent system the internal resistance developed 
during contraction is described by a shunt of elastic and viscous 
elements. In terms of minute structure this shunt is considered 
to be an expression of the gradual interlocking of the fibre texture 
during the development of contraction to a more rigid pattern. 
If this interlocking did not occur, the shortening would not be 
inhibited and the curves of the isotonic and isometric tetanic 
maxima would coincide. After the elastic locking has taken place 
a shortening will only proceed to the extent to which the con
tractile substance is able to produce an internal tension large 
enough to counteract the rising internal resistance and the ex
ternal load. On the basis of the course of the internal tension 
as a function of time during development of the tetanic con
traction, it must be concluded that the decrease in shortening 
velocity is due chiefly to this shunting element.

The resistance from a shunting element, which is developed 
during contraction could also be demonstrated under isometric 
conditions (Buchthal et al. 1944 a, fig. 4). In these experiments 
a periodic vibration (amplitude 1 per cent of Lo) was superimposed 
on a stationary tetanic isometric contraction (20° C.). The stiffness 
was determined by measuring the resulting periodic changes in 
tension. Immediately after the maximal tension had been reached 
in tetanic contraction, the stillness still increased. It was found 
to be at maximum 0.4 sec. after the tension had reached Po. The 
lower stillness which initially was observed at the maximum in 
tension of the isometric tetanus was interpreted as being caused 
by a yielding in the textural pattern produced by the altered 
state of loading during contraction. Due to the low vibrational 
frequency the initial increase in stillness which is discussed in 
detail in a later section (cf. p. 163, 189) did not manifest itself 
in these recordings.

In the preceding section the mechanical reaction of the fibre 
under constant external load has been analysed in the hope that 
the load on the contractile elements would be equal to the external 
load. The results of these experiments, however, show that this 
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is not the case and that the load in the contractile elements varies 
despite external isotonic conditions. In the experimental series 
to be described here, we have introduced changes in load during 
a twitch in order to obtain further information about the extent 
to which the relation found between load and velocity is generally 
valid.

3) The shortening velocity following a transient change in load 
daring a twitch.

Experiments, corresponding to those performed by Gasser 
and Hill (1924) and Hill (1949d) on whole muscle under ¿so- 
inetric conditions, were carried out during isotonic contraction of 
the single libre by introducing sudden changes in load at dif
ferent times during the course of the contraction. The quick 
loads applied to single fibres in these transient experiments 
(0.1—0.8 Po) were less than those used in experiments on whole 
muscles (Hill 1949 d). In whole muscle at the end of the 
latent period the changes in load resulting from the transient 
change in length, were of the order of magnitude of Po.

The mechanical reaction of the fibre during a change in load 
can be interpreted as consisting of a rapid elastic change in 
length, superimposed on a change in the shortening velocity. 
This change in velocity appears to correspond closely to the 
change which could be expected according to the known relation 
between load and shortening velocity.

Fig. 69 shows a twitch at load 0.20 Po (0° C., curve 1) and 
at load 0.40 Po (curve 3). Curve 2 shows the effect of a sudden 
increase in load of 0.2 7J0, lasting 0.12 sec., introduced 0.15 sec. 
after the end of the latent period. During the 0.12 sec. the load 
was thus the same as that in curve 3, after which it continues 
as in curve 1 at 0.2 Po. The change in load could be introduced at 
different times between the end of the latent period and the end 
of the relaxation by means of an adjustable system of switches 
(Helmholtz pendulum). Between every other contraction with 
change in load, a contraction was recorded with constant load, 
corresponding to curves 1 and 3; hence, the mechanical reaction 
of the fibre with and without change in load was carefully 
controlled in this way. Data from a series of experiments of the
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Fig. 69. Transient change in load applied during an isotonic twitch, 
curve 1 and 4: twitches at load 0.2 Po, projected on curves 2 and 5. 
curve 3: twitch at load 0.4 Po.
curve 2 shows the effect of a sudden increase in load of 0.2 Po, introduced 0.15 sec. 

after the end of the latency period and lasting for 0.12 seconds (a).
curve 5 shows the effect of the same increase in load (0.2 Po) introduced when 

shortening is maximal (b).
Lo = 13.5 mm. 0° C. Distance between time marks 20 msec. Stimulus at |.

type described are given in fig. 70. The increase in load of 0.2 
Po was introduced at different times during a twitch (0° C.) 
which began and ended at load 0.2 7%. Curve I represents the 
shortening at 0.2 Po, curve II, the shortening at 0.4 Po, and curve 
III, the difference between the curves for 0.2 and 0.4 Po.

The effect of the change in load introduced from 0.15 sec. 
to 1 sec. after the end of the stimulus, is seen in curves a—k. 
In curves a—d the quick loading causes a rapid change in length 
of about 1 per cent of the equilibrium length; this is superimposed 
by a damped oscillation, and it can be seen that this part of the 
change in length has elastic character. The fibre then began to 
shorten again with a velocity nearly equal to that which would 
have occurred at the same time if the contraction had been in
troduced with a load of 0.4 Po. When the fibre was released 
again after 0.12 sec., it shortened at first elastically and then 
with the same velocity which it would have had at the constant load 
0.2 Po at the same time after stimulation (curves a—c). Shortly 
before the shortening reached its maximum, the mechanical 
reaction to quick load became essentially different from that 
occurring during the shortening phase, 'flic change in length was 
5—6 times larger and no longer of an elastic character. Only during
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Fig. 70. Transient increase and decrease in load applied at different times in the 
course of an isotonic twitch, 0° C.

curve I: shortening in a pure isotonic twitch at load 0.2 Po.
curve II: shortening in a pure isotonic twitch at load 0.4 Po.
curve III: difference between curve I and II.
curve IV: effect of transient change in load in the resting fibre.
curves a—k: effect of an additional load of 0.2 Po, lasting 0.12 sec. and imposed 

on curve I.
curves ax—k1: difference between curve I and curves a—k (net effect of transient). 

ordinate: shortening and elongation in per cent of Lo. 
abscissa: time after stimulus in seconds.

the following relaxation could the effect of the elasticity again be 
demonstrated, as can be seen from curve f, fig. 70, and from 
fig. 69. The course of length after the unloading, in this case 
intersects curve I. This indicates that after quick loading, in
troduced at the maximum of shortening, a shortening could be 
attained during the subsequent quick unloading exceeding that 
which would be possible at a constant load. The forced elon-
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Fig. 71. Effect of transient additional load on time course of isotonic twitch, 0° C. 
("storing”).

curve 1: isotonic twitch, load 0.2 Po projected upon curve 2.
curve 2: isotonic twitch, initial load 0.2 Po; 0.04 second after the end of the 

latency period an additional load of 0.6 Po is introduced for 0.26 sec.

gation thus caused an extra-shortening instead of a lasting 
elongation.

The example shown in fig. 71 shows clearly how transient 
loading and unloading of 0.6 Po can cause a displacement in 
the time course of the shortening. At a time when the relaxation 
in the twitch is complete (load 0.2 Po curve 1), a considerable 
displacement of the shortening can be seen as a consequence of a 
transient quiek load (curve 2) introduced immediately after the 
end of the latent period for about 0.25 sec. After 0.75 sec. 
curve 1 and curve 2 intersect. It may be emphasized that after 
the transient loading the load in curve 2 was identical with that 
in curve 1, and it is seen that the transient prolonged the effect of 
the stimulus considerably.

The increase in duration in the isometric twitch, which could be 
caused by an increased initial degree of stretch corresponds to the 
effect of an increase in load described here. The fact that this 
cannot always be observed may be due to different reactions in 
the series element described later (see p. 172).

The constant relation between load and shortening velocity, 
regardless of the change in load introduced at rest or at 
different times during the shortening, was also obvious from ex
periments with quick unloading. In the experiments shown in 
fig. 72, the initial load was 0.34 Po, which was released to 0.17 Po 

Dan. Biol. Medd. 21, no.7. 11
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Fig. 72. Effect of a transient decrease in load applied at different times after the 
stimulus during the course of shortening in an isotonic twitch, 0° C.

curve I: pure isotonic twitch, load 0.17 Po.
curve II: pure isotonic twitch, load 0.34 Po.
curve IV: effect of a transient decrease in load from 0.34 to 0.17 Po in the 

resting fibre.
curves a—m: effect of a transient decrease in load from 0.34 to 0.17 Po during 

the twitch.
curves a1—rr^: difference between curves a—m and curve II (= net effect of 

transients a—m).
ordinate: shortening and elongation in per cent of Lo. 
abscissa: time after stimulus in seconds.

and the contraction continued against a load of 0.17 Po. Here I
the initial shortening had a pronounced elastic component re
gardless of the time during the contraction at which the release 
was introduced. Nearly up to the maximum in shortening the 
slow change in length following the initial one corresponded |
exactly to the velocity which would arise at the same constant 
load. At the maximum of shortening and during the first part 
of relaxation, the fibre continued to shorten and in contrast to
the findings with a quick increase in load it could only be made 1
to coincide with the curve for constant load by a parallel dis
placement to an earlier phase of the contraction.
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Stiffness measured by transients applied at different times after 
the stimulus in a twitch.

The effect on the fibre which is caused by the change in load 
during contraction is isolated in curves Oj to nij, and the effect 
on the resting fibre is seen in curve IV (fig. 70 and fig. 72). 
Fig. 72 shows the effect of the first release at the end of the latent

Fig. 73. Initial increase in stillness in isometric contraction.
b — tension in an isometric twitch (15° C.).
c == vibrational stillness, frequency 100 c.p.s.
a = ----—---- , where P . = stiffness-tension, for definition see p. 84.p i P ’ st ’ 1

st
ordinate: tension, stiffness, and relative stiffness in arbitrary units. 
abscissa: time in msec.

period (curve af). Here the change in length is of the same order 
of magnitude as at rest, but from the superimposed oscillation, 
the period of which is reduced and the damping increased, it 
can be seen that the state of the fibre has changed. The course 
of the curve indicates that the increase in stiffness began to 
develop in the latter part of the transient. In curves bt to 
the initial change in length was reduced to about half the 
value at rest. In curve the amplitude of the initial change in 
length increased again, and the velocity of the slow change in 
length rose (the velocity of relaxation was compensated for). 
The oscillation period in the damped oscillation was still un
changed, although the initial change in length in the transient 

11*  
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manifested itself at this time only by large changes in length. The 
initial change in length in curve was the same as that in curve k\, 
but the period of oscillation was larger and corresponded ap
proximately to the value found at rest. Shortly afterwards, as

Fig. 74. Initial net increase and net decrease in length caused by different transient 
variations in load applied at different times in the initial phase of contraction (0° C.). 
The figures on the curves indicate the variations in load in units of Po. Variations 
in length measured 15 msec, after introduction of change in load (not corrected 
for the alterations in shortening velocity produced by the change in load occurring 

within these 15 msec.).
ordinate: elongation and shortening in per cent of Lo. 
abscissa: time after stimulus in seconds.

indicated by ml, the stiffness for both large and small changes 
in length displayed the same value as that at rest.

The early maximum in stillness found in these experiments 
could also be observed in experiments with the fibre under 
“isometric” conditions (Buchthal and Kaiser 1944). In these 
experiments periodic vibrations of 100 c.p.s. with an amplitude 
of 1 per cent of the equilibrium length (20° C.) were super
imposed on the fibre. The stillness was measured by recording 
the resulting periodic changes in tension at rest, during a twitch, 
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and a tetanic contraction. Fig. 73 shows the course of the tension, 

the stiffness and ^ess during a twitch of a muscle fibre from 
tension

the semitendinosus muscle. While the tension during the first 
20 msec, rose approximately exponentially, the stiffness increased 
linearly and the ratio between stiffness and tension had a maxi
mum 10—15 msec, after the stimulus (15° C.).

Fig. 74 gives a survey of the resulting change in length obtained 
under isotonic conditions at 0° C. during the first 0.4 sec. after 
stimulation.1 The curves show the initial change in length 
(measured 15 msec, after the change in load), which arose on 
quick unloading from an initial load of 0.2 fJ0 to a final load 
of 0.1 Po, or quick loading from an initial load of 0.2 Po to 0.4 
and 0.8 Po. During transition from rest to contraction in the 
course of the first 100 msec, the extensibility of the fibre was 
decreased very considerably (0° C., comp. Gasser and Hill 
1924 and Hill 1949d). This effect was most pronounced during 
quick loading and unloading at small initial loads. As mentioned, 
the elongation was measured 15 msec, after the transient and the 
changes in length therefore were the sum of the passive elastic 
changes and the active ones, which occurred on account of the 
variation in the shortening velocity caused by the different load. 
The latter change in length amounted to 0.4—0.5 per cent of L0 
within 15 msec, and the passive change in length was therefore 
0.4—0.5 per cent of Lo less than the values measured after 15 
msec, 'fhe time for the appearance of the maximal stiffness 
(corrected in this way) and the value of the corresponding shortening 
in per cent of the maximal shortening at load (initial load) are 
given in 'fable 12. The time taken for the propagation of the 
contraction over the fibre is of secondary importance in this 
connection (see p. 34).

After the maximum in stiffness was passed, the extensibility 
increased again and at the maximum of shortening reached or 
exceeded that of the resting fibre. Also, in experiments in which 
the stiffness was measured by periodic vibrations, the stiffness in 
the later course of a twitch was seen to attain values lower than 
those at rest.

1 The sensitivity employed in the present experiments would not permit 
the recording of a latency relaxation (Sandow 1944, 1947, see p. 147).
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Table 12.
The lime for the occurrence of the maximum in stiffness.

Pl P2
time for the oc

currence of maximal 
stiffness in msec.

shortening in 
per cent of maximal 

shortening

0.20 0.10 250 50
0.20 0.40 200 35
0.20 0.80 70 14
0.40 0.20 300 69
0.07 0.26 250 75

P, denotes the initial load and P2 the load after transient.

On account of a “give” in the structure, the higher the quick 
load, the earlier the minimum in extensibility was passed during 
contraction. Thus, the relative increase in stiffness during transition 
from rest to contraction, measured at the time for maximal 
stiffness, was lowest at high loads. The stillness was higher 
during quick unloading than during quick loading.

Length-tension diagram for the passive series element, calculated 
and measured.

By means of the corrected initial “transient” change in length, 
caused by the quick load, it is possible to determine points on 
a dynamic length-tension diagram for the passive component of 
the structure during contraction and at rest. This is of special 
interest in connection with the interaction between the series 
elasticity and the contractile elements, described by Hill (1949d). 
Fig. 75 gives values for elongation and shortening in per cent 
of the equilibrium length, when the load was increased or de
creased suddenly from initial load 0.2 Po (curve 1). The change 
in load was introduced 100 msec, after the stimulus, and the 
change in length measured was corrected for the effect of the 
shortening velocity due to contraction. The values given in 
curves 1 and 2 are final values measured 15 msec, after the 
transient. Curve 2 shows the dynamic shortening or elongation 
in the resting fibre recorded under the same conditions as curve 1 
which represents values for the contracted fibre. From the ratio 
between increase in tension and increase in length it can be
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seen that the stiffness during contraction was higher at 

small loads than at high loads, in contrast to the findings at rest. 
This is reflected in the fact that curve 1 (contraction) is concave 
towards the abscissa, while curve 2 (rest) is convex. However, 
at all loads the stillness during contraction was higher than the

Fig. 75. Dynamic length-tension diagrams of the series elastic element in a muscle 
fibre, 0° C.

curve 1: determined from transient changes in load introduced 0.1 sec. after the 
stimulus during an isotonic twitch, initial load 0.2 Po (compare fig. 74; 
but in the present example values were corrected for the change in 
shortening velocity caused by the change in load occurring within 15 msec.). 

curve 2: obtained as 1, on resting fibre.
curve 3: calculated from the course of isometric tension and the force-velocity 

relation, initial load 0.2 Po.
ordinale: tension in units of Po.
abscissa: elongation in per cent of Lo.

stiffness at rest. The points of curve 1 and 2 in fig. 75 correspond 
to the end points of the partial length-tension diagrams illu
strated in fig. 15.

To summarize, the experiments with transient changes in 
load applied during an isotonic contraction showed that:

1) the relation between shortening velocity and load was valid 
when the load was changed suddenly during contraction;

2) the stiffness was maximal at an early stage in the course 
of shortening (70—300 msec, after the stimulus at 0° C.);

3) the stiffness in the passive series elements was larger 
during contraction than at rest, and, contrary to the behaviour 
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at rest, the stiffness during contraction was highest at low 
loads.

According to Hill (1949d), a length-tension diagram for the 
passive series elasticity can be calculated from the course of 
the tension in isometric contraction and the force-velocity relation. 
A length-tension diagram calculated on this basis for the isolated 
fibre at initial load 0.2 Po is given in curve 3, fig. 75. The gradient 
of tension increased with the degree of stretch, and tension had 
an approximately exponential course with increasing length. 
The curve corresponds essentially to that determined by Hill 
for the series elasticity in whole muscle. However, with a 
load of 0.8 Po the elongation of the elastic component, measured 
from load zero, was about 6 per cent in the single fibre, 
i. e. half of that found for whole muscle. The cause of this 
difference must be assumed to be a series elasticity, which in 
the whole muscle lies partly outside the muscle fibre itself. 
This assumption is supported by the higher dynamic modulus 
found in the single fibre as compared with whole muscle, and 
which, for example, is expressed by the shorter time (30 per 
cent) necessary for the isometric maximum to be reached in 
the single fibre.

Fig. 76 shows calculated length-tension diagrams for the passive 
series elasticity in the single fibre at different initial loads, ob
tained from the isotonic and isometric contractions shown in 
fig. 61. The curves for the different initial loads cannot be made 
to coincide by a simple displacement in length, which indicates 
that the gradient for the same tension is different for the different 
curves. The single points on the curves are separated by a distance 
corresponding to 10 msec., and it can be seen that the gradient 
in the length-tension diagram is steepest when the tension rises 
quickly as a function of time. If, e. g., the length-tension course 
in the range 0.45—0.6 7% (fig. 61) is compared for initial loads 
of 0.015 and 0.45 7%, an elongation of 0.55 and 1.30 per cent 
of the equilibrium length is obtained respectively. This elong
ation is reached for an initial load of 0.015 7% in 27 msec, and 
for an initial load of 0.45 7% in 62 msec. In the curve which 
started with an initial load of 0.45 7% the change in length thus 
was 0.75 per cent larger and the lime interval required for 
this increase in length was 35 msec. By comparing the increase 
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in length and the increase in time a relative velocity of elon
gation of 0.21 Lo per sec. was obtained.

A systematic investigation in the same fibre of the gradient at 
the same load, but at different velocities of rise in tension, showed

e/orga//or /n per err/.
Fig. 76. Length-tension diagrams of the series elasticity in a muscle fibre, calculated 
from the course of tension in isometric twitches and the force-velocity rela

tion. 0° C.
The figures on the curves denote the different initial loads in units of Po (curve 

for 0.2 Po interpolated).
ordinate: tension in units of Po. 
abscissa: calculated elongation in per cent of Lo.

that the gradient varied approximately linearly with the velocity 
of rise in tension. For example, at a load of 0.5 Po, the following 
values were obtained for the velocity of rise in tension and the 

stillness (S
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Velocity of rise in tension in Po
per sec  2.2 3.7 4.3 5.9

Length-tension gradient in Po X 10.6 16.3 18.0 23.5

If the gradients for the different length-tension diagrams were 
extrapolated to zero velocity of rise in tension, about the 
same static gradient was obtained at all the loads examined; it 
amounted to about 4—5P9Xl^'. Compared with the size of the 
gradient at different velocities, this indicates that the stiffness 
increases with increasing velocity to 2.5—5.5 times the extra
polated value for the static stillness. The ratio between static and 
dynamic stiffness derived from the calculated length-tension 
diagram of the series elastic element indicates viscous properties 
of the same type as found in the resting libre. Fig. 77 shows 
that part of the length-tension diagram of the series element 
which lies above 0.5 Po. It can be seen that the diagrams have 
different slopes at the same tension. The velocity of elongation 
of the visco-elastic series element in an isometric twitch varied 
between 0.1 and 1.0 Lo per sec. dependent upon the initial load 
and on time (0°C., see fig. 76).

The fact that during contraction the length-tension diagram 
for the passive element is so clearly dependent on the time 
elapsing for a given change in length or tension, shows that the 
assumed series element is dominated by viscous properties. The 
cause of the difference between the calculated length-tension 
diagram and that evaluated by transient experiments consequently 
lies in the difference in the time which is necessary to obtain the 
data of length and tension. In the diagram measured from 
transients a given change in length was reached within 10 msec., 
in the calculated diagram the same change was developed within 
about 200 msec, (curve 1 and 3, fig. 75). Although the mechanical 
properties of the series element thus have a predominantly 
viscous character within the range so far mentioned (up to 
300 msec, at 0° C.), the level during a tetanic contraction shows 
that the elongation of the series element approaches a limiting 
value. The series element, therefore, essentially can be described 
by a Voigt-element (or better a series of Voigt-elements), i. e. a 
viscosity which dominates during quick transients shunted by an 
elasticity which limits the change in length.
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The findings of Hill (1949 d) on whole muscles of a satis
factory agreement between the calculated length-tension diagram 
and a diagram obtained at quick release during isometric con
traction, can probably be explained by the partial concealment 
of the viscous character by the series elasticity lying outside the

Fig. 77. Partial length-tension diagrams of the series elastic element during isometric 
twitches. The diagrams only illustrate the range of tension exceeding 0.5 Po. The 
figures on the curves denote different initial loads and the figures at the broken 

lines denote time in msec, after the tension 0.5 Po has been passed. (0° C).
Mean velocity of rise in tension:
curve 0.04 Po = 5.1 Po per sec.
curve 0.30 Po = 3.3 Po per sec.
curve 0.45 Po = 2.4 Po per sec.

ordinate: instantaneous load in units of Po. 
abscissa: elongation in per cent of Lo.

fibres. Hill (1950 b) considers the series element in whole 
muscle to be an undamped elasticity and does not assume 
viscous properties to be of importance in the range of the velocities 
examined.

The analysis of the length-tension diagram of the series 
element in the single fibre gives, in the same way as Hill(1949(1) 
has shown for whole muscles, an explanation for the difference 
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in the time course between a contraction under isometric and 
one under isotonic conditions, i. e. it helps to understand the 
fact that the shortening maximum in a twitch occurred at a 
later point in time than the peak of tension in an isometric 
twitch.

The markedly viscous character of the passive series element 
found in the present experiments must affect the views regarding 
the mechanical reaction of the active element. The assumption 
that the shortening maximum in the active elements coincides in 
lime with the maximum of tension in isometric contraction (Hill 
1949 d) thus can hardly be maintained. At the maximum of tension 
in an isometric twitch, the elongation in the series element has 
not yet reached its final value. This elongation is compensated for 
by a shortening in the active elements. As soon as the shortening 
velocity in the active elements, because of the relatively high 
tension, decreases (force-velocity relation) and becomes less than 
the velocity of the passive elements, the peak of the external ten
sion is passed. Similar considerations apply to isotonic contraction.

At the onset of contraction, whether initiated isometrically 
or isotonically, the forces produced by the increase in tension 
or the shortening will act on the texture and tend to reorganize 
the textural pattern. That this process takes considerable time 
during contraction as well is seen from the previously mentioned 
transient experiments (cf. p. 124). In part the pattern of the texture 
will behave as a series element to the contractile substance. 
Its adjustment which proceeds during shortening will effect that 
even at constant load and at the maximum of shortening the con
tracting elements still shorten, counteracting the viscous length
ening of the series element. Thus, although the external short
ening velocity is zero, this implies that the internal shortening 
velocity in the active elements is equal to the velocity of elongation 
in the passive series element.

Hence, the explanation of the displacement in time of the maxi
mum of tension and shortening in a twitch, according to the above, is 
as follows: At the peak of the isometric tension and at the peak 
of the isotonic shortening the velocity of the viscous elongation in 
the passive elements is equal to the shortening velocity in the 
active elements. During the isometric twitch the tension rises 
rapidly and the viscous series element, which still can be stretched 
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considerably, elongates rapidly. The velocity of shortening in the 
active elements is therefore compensated at an early stage by 
the velocity of elongation in the series element, and an early 
maximum is obtained. During the isotonic twitch, in which the 
series element is under an approximately constant load, the velocity 
of elongation is low and at the peak of shortening the com
pensating influence of the velocity of viscous elongation is of less 
importance. Therefore, the shortening maximum is displaced to 
a later time.

The assumption that the shortening in the active elements is 
not maximal until the external shortening has passed its maximum, 
may serve as an explanation of the humps in the course of 
relaxation, also described in whole muscle (Hartree and Hill 
1921). The viscosity of the series elements may cause this hump 
to occur at the point at which relaxation (desactivation) actually 
begins in the active elements.

The internal tension, Pt.

According to Hill (1949 d), the intensity of activity is de
lined by means of the internal tension (P¡) in the contractile 
elements. P¡ denotes the tension at which the active elements 
neither shorten nor elongate. Assuming an undamped series 
elasticity, values of Pt- in the isometric twitch can be determined 
by the maximum of tension, and in the isotonic twitch, by the 
maximum of shortening. However, the viscons character of 
the series element makes it difficult to determine P¡ in this way, 
since the active elements must still be assumed to shorten at the 
maximum of tension or shortening.

If P¡ is determined as a function of time from the maximum 
of the shortening, then ambiguous values are obtained, i. e. a high 
and a low value. The shortening maximum at low and high loads 
was earlier than at intermediate loads (see e. g. fig. 61). If the 
viscous elongation in the passive series elements is taken into con
sideration, unambiguous values may be expected for P¡ at different 
loads, and the different positions of the shortening maximum as a 
function of load in the isotonic twitch can be understood. Assuming that 
relaxation sets in later when the load is high, it would follow that the 
shortening maximum also occurs at a later time with a rising load. This 
assumption is supported by the observation illustrated in fig. 71, 
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where it is seen that a sudden rise in load in the first phase of 
an otherwise isotonic twitch caused a considerable delay in the time 
for the appearance of the relaxation. However, the yielding of the 
series element will influence the occurrence of the peak of shortening 
with time in the opposite direction. Hence, the low shortening velocity 
at a high load is compensated earlier by the velocity of elongation of 
the passive elements, and the shortening maximum in an isotonic twitch 
at a high load occurs earlier than at an intermediate load. The time 
required for the shortening maximum to develop in a twitch thus 
increases with increasing initial load until the velocity of elongation of 
the passive elements begins to exert its influence and causes this time 
to be decreased. Since, as mentioned, the load itself affects the time 
at which the maximum of. shortening occurs, it must be assumed that 
the relative course of the internal tension as a function of time also 
varies at a high and at a low load.

Viscous properties of the series elastic element have been 
shown to account for differences in the gradients of its length
tension diagram which exist at a given load. Moreover, the shape 
of the computed length-tension diagrams of the visco-elastic 
series element gives information as to the rôle of the sarcolemma 
for the mechanical properties of the resting fibre. The fact that 
the initial gradient of the length-tension diagram of the series 
element increases considerably with load indicates the existence 
of an interdependence between external stress and orientation 
of the series element at the moment of stimulation. An increase 
in load from 0.03 to 0.6 Po is associated with an increase of the 
initial gradient of five times (fig. 76). This increase in orientation 
requires that external work is invested in the structure which 
represents the series element at rest. Obviously, this conclusion 
is incompatible with the assumption that the fibrillar substance 
does not contribute to the length-tension diagram of the fibre at 
rest (cf. the discussion of the rôle of the sarcolemma p. 110).

At the onset of contraction the stillness of the visco-elastic 
series element amounts to approximately 15PoxLjfl and in
creases during the further development of contraction to about 
twice this value, i. e. the stiffness is of the same order of magnitude 
as that found in dynamic experiments on the transition from 
rest to contraction. Hence, the stiffness in the visco-elastic series 
element in the range of loads investigated (up to 0.5 Po) repre
sents the essential part of the total stillness which develops during 
contraction, and at the transition from rest to contraction the 
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stillness which can arise from the sarcolemma will only be of 
secondary importance.

Thus, from the discussion above it can be seen that the visco
elastic series element whose presence was demonstrated under iso
metric conditions, exerts its influence under isotonic conditions as 
well. It can explain the variation with load in the time required to 
obtain peak shortening. As long as the value for the lengthening 
velocity of this element is unknown, it is impossible to determine P¡ 
by the shortening maximum in the isotonic twitch.

The initial shortening velocity as a function of temperature.
The initial shortening velocity depends chiefly on two factors: 

1) load, discussed previously, and 2) temperature. The velocity 
increases with rising temperature. In experiments in which, for 
each temperature, sufficient time was allowed for complete 
thermal equilibrium as well as structural changes brought about

Fig. 78. Force-velocity relation at 26° and 0° C., isolated fibre. 
ordinate: maximum shortening velocity in Lo per second. 
abscissa: load in units of Po.

by temperature variation, an increase in the velocity of short
ening of 4 to 8 times was found for a difference in temperature 
of 2G degrees. If the initial velocity as a function of temper- 
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ature is examined for a series of fibres, one finds a family of 
curves which converges at some upper temperature (26° C.). This 
permits the conclusion that the spread of temperature coefficients 
is not random but a systematic property inherent in the physiolo
gical mechanism of different fibres, i. e. fibres with a low initial

Fig. 79. Hysteresis in shortening velocity with increasing and decreasing temperature, 
isotonic twitches, load 0.1 Po. Duration of temperature cycle 10 minutes. Regarding 
temperature equilibrium between muscle and surrounding fluid see text.

ordinate: shortening velocity in Lo per second. 
abscissa: temperature in degree C.

velocity tend to have a high temperature coefficient (fig. 78). The 
temperature coefficient also varied as a function of the initial load. 
When the load was varied from zero to 0.5 Po, the temperature 
coefficient increased by 30—40 per cent.

Compared with the temperature dependence of shortening, 
the initial shortening velocity at low initial loads varied con
siderably more with temperature. At a high load the temperature 
coefficients for shortening and shortening velocity are of the same 
order of magnitude.

Measurement of the shortening velocity during continuously 
rising and continuously falling temperature showed, at the same 
temperature, higher velocity of shortening during falling than 
during rising temperature. This difference might amount to 
half of the total variation in velocity in the range 0° to 25° C.
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A series of experiments carried out with temperatures rising 
from 0° to 25° C. within 5 minutes and falling back to 0° within 
the next 5 minutes showed a hysteresis which could not be 
explained on the basis of an incomplete temperature equilibrium 
between the Ringer’s solution and the fibre, since the time for 
thermal equilibrium of the fibre did not exceed 1 second (fig. 
79). The cause of the hysteresis must be sought in a delay 
in the temperature-dependent adjustment in the minute structure. 
A hysteresis in the adjustment of the structure caused by variations 
in the temperature is well known from plastics. A similar hysteresis 
was also found in the muscle fibre in. measurements of the 
membrane potential (Buciitiial and Lindhard 1936).

Hill’s equation.
The fact that the variation in the initial shortening velocity 

with the load represents one of the best reproducible expressions 
for the dynamic properties of the muscle during contraction, 
has led Hili. (1938, 1939) to put forward the following equation:

(7J + a)-(V+ô) = (P0 + a)ô, (62)

where Po is the tension at zero shortening velocity and P the 
load. V denotes the shortening velocity in cm per sec. and 
a and b constants with dimensions of force and velocity re
spectively. For sartorii at 0° C. Hill found values of 0.25 Po for 
a and 0.33 L'o per sec. for b, where Lo denotes “natural” length, 
i. e. a length which is 35—50 per cent longer than the Lo of the 
fibre. Expressed in units of Lo, b in the sartorius, therefore, be
comes 0.45 Lq per sec. For the whole semitendinosus muscle, 
examined under the same conditions as the single fibre and 
small bundles, we found a value for a of 0.125 Po and for b of 
0.38 Lo per sec. In single fibres from the same muscles values 
of 0.30 Po were found for a and 0.92 Lo per sec. for b. The 
values for a and b in isotonic contraction were about twice as 
large as the constants measured for the same fibre during after
load contraction. Three experimental series of this type thus gave:

a (isotonic) „ , b (isotonic)
—; iv = 1.87 and —~—: rç a (afterload) b (atterload)

Dan. Biol. Medd. 21, no.7. 12
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In a whole muscle, in which the length during contraction 
under isotonic conditions is limited by the shunting connective 
tissue or by a small number of fibres, which on account of a small 
equilibrium length are maximally loaded, the rest of the fibres 
work under afterload. Hence, it cannot be expected that after
load conditions for the whole muscle will give a similar difference 
in the constants of the equation as that found in the single 
libre.

For whole sartorius muscles Hill (1938) found that the 
value of a corresponds to the heat of shortening. If the same 
were true for semitendinosus, a transformation of the values found 
for a in whole muscle and single fibre to g/cm2 by means of the 
values for Po listed in Table 10 would give a heat of shortening in 
the single fibre which is four times that in whole muscle, i. e. for 
the fibre a = 841 g/cm2 and for whole muscle a = 213 g/cm2 (0°C). 
Even when the value of a for whole muscle is corrected for 
the 30 per cent passive substance, we still have so large a 
difference between a in the fibre and in the muscle that 
it is incompatible with the assumption of a as shortening 
heat.

On account of the different values found for the constant a 
in isotonic and afterload contractions one might expect that the 
heat of shortening in the fibre during isotonic contraction would 
be nearly twice as large as that during afterload. Hence, in the 
case of the single fibre the constant a can hardly be considered 
to correspond to the heat of shortening, but can only be inter
preted as an arbitrary constant in the empirical relation between 
load and velocity.

The constants a and b in the single fibre and in 
whole muscle.

The difference in the mechanical reaction between the single 
fibre and the corresponding muscle may be due to the factors: 
(1) different equilibrium lengths of the single fibres in the muscle, 
causing different degrees of stretch, and (2) shunting con
nective tissue. In the semitendinosus muscle, in which the fibres 
run from tendon to tendon, the shunting connective tissue can 
be assumed to act only slightly as a limiting factor for the shortc- 
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ning velocity. However, a difference in length between the diffe
rent libres was found.

We have examined the distribution of the fibre lengths in a 
semitendinosus muscle. For this purpose the muscle was fixed 
at its natural length. 15 per cent nitric acid (Romeis 1928) was 
used for fixation and was allowed to act for 2—3 hours. The 
muscle was then washed in water and the single fibres with their

/en gib
Fig. 80. Distribution of fibre lengths in the semitendinosus, Rana temporaria. 

/<?// ordinate: number of fibres in the different ranges of length. 
right ordinate: number of fibres in per cent.
abscissa: length in mm.

corresponding tendon ends could easily be isolated. The number 
of fibres in the muscle examined was 515, of which a length 
determination could be carried out on 458. The length varied 
between 9 and 15 mm with a mean value of 12.25 mm and a 
standard deviation of 1.14 mm (fig. 80). According to this distri
bution, the average difference in length for two fibres selected 
at random was 1.25 mm, corresponding to a difference in length 
of 10 per cent. There is a 30 per cent probability of a diffe
rence in length of > 2 mm, corresponding to more than 15 per 
cent of Lo.

The resulting inhomogeneous state of stretch can explain the 
12*  
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difference between the force-velocity curve for single fibre and 
whole muscle. It follows from the approximately constant tension 
in the curve for the isometric maxima over a large range of 
lengths that a non-uniformity in stretch will hardly affect Po. At 
load Po the shortening velocity is zero and the diagrams for fibre 
and muscle coincide, just as the curves have the same starting 
point when the shortening proceeds without load. The shortest 
fibres will be subjected to a relatively greater part of the load. 
Hence, the initial shortening velocity will be determined mainly 
by the load acting on these fibres. The fibres with longer equi- 
librium lengths (i. e. less stretched) will not take over part of 
the load until the contraction, and hence the shortening, has 
proceeded for some time. Therefore, they contribute to the 
shortening velocity at a time when the velocity of the short 
fibres otherwise would decrease.

A following calculation shows that differences in fibre length 
of the same order of magnitude as found in the histological 
examination just described can account for differences in the 
force-velocity relation of fibre and whole muscle of the same 
order of magnitude as that found experimentally. In this cal
culation a system is considered consisting of two fibres, which 
on account of a difference in equilibrium length of 20 per 
cent have initial tensions in the ratio P2 — 3:1. The resulting 
velocity for this system can be compared with the velocity of a 
whole muscle. In the calculation Hill’s equation was applied 
to the fibres in the range of loads up to Po. At loads of above 
Po, where the shortening is actually an elongation, the velocity 
as a function of the load, has an almost horizontal course (Katz 
1939), which has been taken into account in the calculations.

In Appendix III, p. 298, the calculations are given of the 
shortening velocity of the system mentioned above, corresponding 
to a whole muscle assuming for its fibres: a — 0.30 Po and 
b = 0.92 Lo per sec. If the computed force-velocity curve is 
approximated by a hyperbola, we obtain:

ani = 0.145 Po and bni = 0.445 L0/sec.
or

= 0.120 Po and bm = 0.360 Å0/sec.
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according to the way in which the hyperbola is fitted to the cal
culated resulting velocity.

The experimental values for a and b from whole semiten- 
dinosus muscle were:

am = 0.125 Po and bm = 0.38 L0/sec.

Thus, it is possible from the different state of stretch for the 
various fibres in the muscle to understand the difference in the 
constants of the equations for the single fibre and whole muscle, 
fhe difference in the specific maximal tension during contraction 
for whole semitendinosus muscle and its single fibres was 
discussed on p. 134.

The relatively higher shortening velocity found in whole 
semitendinosus muscle as compared with sartorius is assumed 
to be due to a larger non-uniformity in fibre length in the sar
torius with a resulting larger proportion of connective tissue.

Relaxation (desactivation) after the cessation of stimulation.
The course of the shortening and the course of the relaxation 

with time are different. While the shortening velocity reached its 
maximal value immediately after the end of the latent period, 
the relaxation velocity did nof reach maximum unlil some time 
after the cessation of stimulation. In the first phase of shortening, 
the shortening velocity was approximately constant, while the 
change in length after the interruption of stimulation followed 
an S-shaped curve. Therefore, the relaxation velocity rose 
slowly, reached a maximal value and then decreased slowly 
again. In tetanic contraction at 0° C., the time interval between 
the interruption of stimulation and the maximal relaxation 
velocity was 0.3 see.

When characterizing in the following the mechanical course 
of the relaxation by the maximal relaxation velocity (V(i), we 
are well aware that this is only an approximate description of 
the whole course of relaxation, 'fhe relaxation might also be 
characterized by the interval elapsing between the interruption 
of stimulation and the occurrence of maximal velocity. However, 
since the maximal relaxation velocity showed characteristic 
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variations caused by shortening, load, temperature, duration of 
contraction, and fatigue, it was convenient to use this parameter 
in discussing relaxation.

Shortening : At the same load, temperature, and duration of 
contraction, the maximal relaxation velocity depended on the

Shortening in per cent Lo
Fig. 81. Maximal shortening velocity (V = •), lengthening velocity (V(/ = O) 
during relaxation, and velocity constant (+) plotted versus maximum shortening 
during and after different degrees of isotonic tetanic contraction. 0° C., load 
0.17 Po, different strength of stimulation, completely curarized muscle fibre.

Ze/f ordinate: velocity in Lo per second.
I V I right ordinate: velocity constant ------------
\shortening 

abscissa: shortening in per cent of Lo.

in sec.

amount of shortening. A variation of the shortening at the same 
load could be obtained by varying the strength of the tetanic 
stimulation from threshold value to three times the threshold 
value. Fig. 81 shows that the maximal velocity of relaxation 
increased approximately proportionally with the shortening up 
to 75 per cent of the maximal shortening, i. e. a shortening of 
approximately 60 per cent of Lo.
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Duration of contraction: Different durations of contraction 
were obtained by varying the number of stimuli from 1, 2, 3, 4
sli tetanic contraction lasting 3—10 sec. The duration
was defined as the time elapsing between the first sign of shortening
and the time at which the relaxation velocity was maximal.

Fig. 82. Decreasing relaxation velocity, expressed as velocity constant, with in
creasing duration of the isotonic, tetanic contraction, 0° C., load 0.15 Po.

ordinate: ratio between maximum lengthening velocity after interruption of 
stimulation and maximum shortening (“velocity constant” in sec.-1). 
abscissa: duration of contraction in seconds.

Since the maximal relaxation velocity was also affected by 
the shortening, the course of relaxation was described by the 
maximal velocity of relaxation per unit of shortening (in sec.-1). 
Within the range of proportionality between shortening velocity 
and shortening this “velocity constant" expresses the effect of the 
duration independent of the shortening reached. The velocity 
constant decreased with increasing duration of contraction (fig. 
82) and the effect was most marked during transition from a 
twitch to a tetanic contraction. The duration of contraction re
quired for the velocity constant to approach constant values 
varied inversely with the load in the different experiments, i. e. for 
high and low loads the extreme values were 3 and 8 sec. re
spectively. That the effect on the relaxation velocity was not 
caused by fatigue was seen from control contractions of short 
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duration released 1—2 sec. after a tetanic contraction of long 
duration. The controls immediately showed high relaxation 
velocity.

The decreased velocity of elongation occurring with increased 
duration of contraction may he due to different factors. Apart 
from a possible influence of metabolic products, which may 
counteract relaxation, it is possible to imagine the two follow
ing mechanical causes: (1) the effect of the visco-elastic 
series element, which causes a passive shortening reducing 
the velocity of external relaxation. Since the visco-elastic ele
ment is stretched during contraction, an increased duration of 
contraction will cause an increased stretching of series ele
ments, which will be reversed during the relaxation. (2) the 
process which during contraction is expressed by a mechanical 
shunt over the contractile substance (locking) can also be as
sumed to delay the course of relaxation. With increasing du
ration of contraction, the locking has an increasing influence 
(see p. 131 and p. 155). Hence, the stabilization in the struc
tural pattern will delay the manifestation of the internal re
laxation.

Fatigue'. Numerous repetitions of contractions of the same 
duration gradually caused a reduction of the relaxation velocity 
to about the same extent as the shortening itself was reduced. 
Thus, the velocity constant was not significantly affected by 
fatigue. Both the relaxation velocity and the shortening were 
more affected by fatigue than the shortening velocity. When 
relaxation velocity and shortening during fatigue had fallen to 
35 per cent of the initial values, the shortening velocity was only 
reduced to 60 per cent of the initial value.

Load'. As a function of the load, the relaxation velocity after 
tetanic contraction always had a maximum at 0.2 to 0.4 1\ 
(fig. 62 and 83). The maximum value of the relaxation velocity 
varied considerably from fibre to fibre and, when referred to 
the same load, could even exceed the shortening velocity by 
20 to 25 per cent.

Temperature: It is well known from experiments on whole 
muscles that over a considerable range of loads the temperature 
dependence of the relaxation velocity is larger than that of both 
the shortening velocity and of the shortening. Fig. 83 shows the 
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shortening and relaxation velocities as a function of the load 
during tetanic contraction at 0° C. and 26° C. At loads > 0.2 Po 
the temperature dependence of the relaxation velocity was always 
larger than that of the shortening velocity. This difference in

Fig. 83. Maximal shortening velocity ( V) and lengthening velocity ( V(() during 
and after isotonic tetanic contraction (duration approximately 1 second), 0° 

and 26° C.
ordinate: velocity in Lo per second, logarithmic scale. 
abscissa: load in units of Po.

creased with increasing load. At load 0.25 Po the relaxation 
velocity thus increased 20 times and the shortening velocity 7 
times, when the temperature rose from 0° to 26° C. ; at 0.4 Po 
V(i increased 50 times and the shortening velocity only 8 times 
for the same rise in temperature. In the range of load 0 to 0.2 Po, 
where Vd increased rapidly with load, the temperature dependence 
was less than at high loads, and at loads < 0.1 Po it may be 
less than the temperature dependence of the shortening velocity.
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The experiments at 26° C. also showed a maximum for the 
relaxation velocity as a function of the load. This maximum 
occurred at higher loads than the maximum in experiments at 

0° C. The velocity constant | ——;—7—I varied more markedlyShortening/ J
with the load at 26° C. than at 0° C.» just as the temperature 
coefficient was larger at a high than at a low load (fig. 84).

Fig. 84. Velocity constant for relaxation as a function of load at 0° and 26° C. 
ordinate: velocity constant in sec. l.
abscissa: load in units of Po.

The larger temperature dependence found for the relaxation 
velocity, as compared with the shortening velocity, supplies 
an explanation for the difference in the influence of tem
perature on the shortening in a twitch and in a tetanic con
traction. As previously mentioned, the shortening in tetanic 
contraction increased markedly with rising temperature, while 
the shortening in twitch increased much less, or decreased. 
Both in a twitch and in a tetanic contraction the relaxation 
appears externally after the end of the stimulation. In a twitch 
this occurs so early that a considerable shortening velocity can 
still be present. At the peak of the twitch the external shortening 
velocity is zero, but that of the active elements is compensated for 
by the velocity of elongation in the visco-elastic series element.
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At high relaxation velocity and high velocity of stretch in the 
passive elements, the shortening velocity is compensated at an 
early time and hence the maximal shortening is reduced. The 
fact that relaxation velocity rises more rapidly with rising tem
perature than the shortening velocity will cause a decrease in 
the shortening of a twitch as compared with that of a tetanic 
contraction. This decrease in shortening in a twitch as compared 
with that in a tetanic contraction usually was so pronounced that 
the absolute shortening in the twitch also decreased with rising 
temperature, although the shortening in tetanic contraction in
creased.

Twitch as compared with tetanus.
Shortening and tension in a tetanic contraction considerably 

exceeded that in a twitch. Figures for this increase with in
creasing number of stimuli have been given in a preceding 
section, which also dealt with the displacement of the shortening 
maximum to a later time in the course of shortening when the 
number of stimuli was increased.

Essentially the difference between twitch and tetanic contraction 
must be attributed to the fact that during the latter there is a 
continuous supply of stimuli which results in a quasi-stationary 
equilibrium between elements which shorten and elements which 
relax. In a twitch the single stimulus causes only a limited part 
of the contractile substance to go into contraction, since relax
ation has desactivated part of the contracted elements already 
before the shortening maximum has been arrived at. In addition, 
when a single stimulus is applied the limited possibility of activ
ation might also be a limiting factor. Thus, shortening in a twitch 
often comprises only a minor fraction of that attained in tetanic 
contraction. This is true even when the relaxation velocity is low as 
compared with the shortening velocity, due consideration being 
given to the more limited time available for the development of 
a twitch.

It remains to explain why the initial shortening velocities 
during a twitch and a tetanic contraction following maximal 
stimulation are identical. Apparently this finding is in contradic
tion with the assumption that relaxation starts to act in a twitch 
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before the maximum in shortening has been reached. However, 
there are a number of observations which indicate that there is 
an upper limit for the velocity with which contractile substance 
can be activated, regardless of lhe number of stimuli applied. 
Hence, the stimuli will only be effective gradually. Ex
amples for this “storing” of stimuli with a following delay in the

Fig. 85. Correlation between the ratio of shortening in the isotonic twitch and 
tetanus and the ratio of relaxation and shortening velocity.

ordinate: peak shortening of twitch in per cent of the shortening in tetanic 
contraction.

abscissa: ratio between maximal relaxation velocity and shortening velocity in 
tetanic contraction, logarithmic scale.

maximum of activation have been given in a previous section 
(cf. p. 141).

The reduced shortening found in a twitch as compared with 
a tetanic contraction at different loads and temperatures can be 
explained roughly by the joint effect of shortening and relaxation 
velocities and of a limited possibility of activation by virtue 
of the single stimulus applied.

The external shortening and relaxation velocities can, with 
certain reservations, be considered to correspond to the same 
quantities in the contractile elements themselves. On this basis, an 
attempt has been made to correlate the ratio of the peak shortening 
in a twitch and the maximal shortening in a tetanic contraction with 
the ratio of the relaxation and shortening velocities in a tetanus.
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Each point in fig. 85, where the abscissa denotes the logarithm 
y

of - and the ordinate the ratio between shortening in a twitch 

and in a tetanic contraction, corresponds to a mean value from 
experiments on at least five different muscle fibres or small fibre 
bundles. The points include experiments at high and at low 
temperature, and at high and low load in non-fatigued fibres 
and at different degrees of fatigue. Regardless of these different 
experimental conditions, the relative shortening in the twitch as 
compared with that of the tetanic contraction decreased with in- 

y
creasing For a fixed value of this ratio, shortening in a twitch 

as a fraction of the shortening in a tetanic contraction varied 
on an average 8 per cent and at most 15 per cent. This spread 

y
must be attributed to the fact that —<l in the active substance 

V
can only be reflected with approximation in the external 
reaction of the fibre. A direct transfer of changes in length and 
tension in the contractile elements is prevented by their organi
zation in the texture. Furthermore, as mentioned above, the 
external relaxation velocity is the sum of relaxation and shortening 
velocities in the contractile component.

Initial total activation or gradual activation?

The present explanation of the difference between twitch and 
tetanus deviates essentially from that suggested by Hill (1949c). 
We assume a continuously increasing degree of activation with 
increasing shortening. Hence, the shortening velocity is con
sidered to be an expression of the velocity with which the con
tractile elements are activated. According to Hill the degree of 
activation (contraction intensity, Pf) is practically maximal at 
the onset of shortening or tension. This implies that the whole 
contractile substance simultaneously is thrown into contraction.

The finding that the increase in stiffness develops much faster 
than both tension and shortening has been considered one of 
the main indications of the early and total activation. However, 
as previously described, in the isolated fibre both longitudinal 
and torsional stiffness did not reach their maximum values until 
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to £ of the time necessary for the attainment of the shortening 
maximum had elapsed. Also in whole muscle Gasser and Hill 
(1924) and Hill (1949d) have demonstrated that maximal stillness 
is reached only about twice as fast as the maximum in tension. 

According to Hill the early maximum in stillness indicates 
an initial maximum activation of the contractile component. 
Its activity is transmitted through a passive series element 
which does not give external manifestations of stillness until 
some shortening has developed and has stretched the series 
element. The explanation suggested here assumes a gradual 
development of activation in contractile chains which are more 
or less aligned (slack). The question is, however, whether the fact 
that the maximum in stillness occurs earlier than the maximum in 
tension, is consistent with the assumption of a gradual activation 
of the contractile substance during the development of con
traction. In a homogeneously aligned contractile substance it 
should be expected that the stillness increases proportionally 
with the degree of activation. Our suggestion that not all con
tractile elements contribute simultaneously to the onset of tension 
would imply an initial rise in stillness as well. Under isometric 
conditions the slack chains, as their lengths become comparable 
with the taut ones, will contribute to the stiffness in finite in
crements, so that as a function of time the stillness builds up 
quite rapidly as more and more slack chains are recruited. 
Moreover, remembering the general property that stillness in
creases with rising tension, as the tension in the various chains 
increases, so will their stillness and thereby the total stillness 
will increase as well. On the other hand, the tension contributed 
by each chain as its slack is taken up will not occur in steps, 
but will gradually rise from zero.

Similarly, under isotonic conditions on account of their higher 
shortening velocity, the slack chains will catch up with the loaded 
ones and contribute stepwise to the total stillness, whereas they only 
gradually assume their share in the load, and, thus again the 
rate of the increase in stillness will be greater than that of the 
shortening. The finite initial contribution of a chain to stillness 
will be equal to the stillness present in it in the state at which 
it is “captured” by the load. With the tension rising in the whole 
texture the intrinsic forces will increase and with progressing 



Nr. 7 191

contraction cause a “give” in the contractile elements which will 
tend partially to diminish the mechanical elTect of the rise in stillness 
(cf. also Buchthal et al. 1944 a). In the equivalent system the 
yielding which occurs during contraction both under isometric 
and isotonic conditions is symbolized by the viscous series 
element previously mentioned (cf. p. 170).

The assumption of a non-uniform state of internal tension in 
the contractile elements as a cause of the early maximum in 
stillness is supported by the finding that the maximum is most 
pronounced at a small initial load. There the slack is most pro
nounced in the resting fibre. The same mechanism can explain 
the previously described changes of elastic and viscous stillness 
with vibrational amplitude (cf. p. 102). If one assumes that 
the disappearance of slack is the main cause of the initial rise 
in stillness, the course of stiffness with time can hardly prove 
or disprove an initial total activation.

The early development of heat of activation within the latent 
period is used as an argument in favour of an initial maximal 
activation (Hill 1949c, 1950a). However, the time course of heat 
of activation can also be attributed to the heat production which 
accompanies the shortening in slack chains (cf. p. 283). Hill’s 
(1950 c) finding that heat of activation develops more slowly when 
contraction is initiated at high loads than at low loads can also 
be explained by assuming a gradual activation.

As discussed in detail in Part IV, the interpretation suggested 
in the present paper gives a suitable basis for a quantitative 
explanation of the variation of shortening velocity with load, a 
finding difficult to understand from the assumption of a total 
initial activation. It can also bel]) to understand the previously 
mentioned “storing” of the effect of successive stimuli.

Active or passive relaxation.
From the analysis of the course of relaxation as a function of 

load and temperature, it is possible to discuss certain aspects of 
the problem of relaxation. An active relaxation implies the 
assumption that the contracted state is a state of equilibrium for 
the contractile substance, and that the resting length is reached 
by an active extension of the contractile elements after the 
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cessation of stimulation. Contraction may be interpreted as the 
removal of a “barrier” to shortening, and the potential energy 
decreases during the shortening and is then rebuilt during the 
active relaxation. A passive relaxation, on the other hand, means 
that the process of contraction is active, since the mechanical 
energy is not stored in the minute structure of the resting fibre. 
During transition from rest to contraction the energy content of

Fig. 86. Comparison between the course of adjustment in the resting fibre and 
during relaxation from isotonic tetanic contraction. 0° C.

curve 1: resting fibre, initial load 0.05 Po, suddenly loaded by 0.2 7%.
curve 2: relaxation of isotonically contracted fibre after interruption of stimulation 

(load 0.2 Po).
ordinate: elongation in per cent of Lo. 
abscissa: time in seconds.

the fibre increases. Hence, the beginning of relaxation only 
indicates the end of the state of contraction, whereupon the 
elasticity of the contractile substance acts to reestablish the 
resting length of the entire texture. In passive relaxation, the 
transition from contraction to rest denotes the time at which the 
external load begins to pull out the shortened—but desactivated— 
minute structural elements to the resting length. The velocity with 
which this stretching occurs can be determined with good 
approximation by applying a sudden load to the resting fibre 
(transient). An unavoidable source of error in the evaluation of 
these experiments consists of non-contractile, elastic series 
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elements, which also are present in the fibre, although to a less 
extent than in whole muscle. Hence, before comparing a transient 
at rest and the elongation during relaxation it will be necessary 
to investigate to what extent the deformation during transient on 
the resting libre takes place in the contractile elements. This in
formation is provided by the length-tension diagrams. A fibre 
which had contracted without tension and then was loaded with 
0.5 Po was stretched by about 15 per cent of Lo. When the fibre was 
loaded at rest, the corresponding increase in length amounted to 
about 100 per cent of Lo. Therefore, it must be concluded that the 
essential part of the stretch in the resting substance occurred in the 
contractile elements. Consequently, the transient course shown in 
fig. 86 (curve 1), illustrating the effect of quick loading with 
0.2 Po in a resting fibre with small initial load, is essentially an 
expression of the mechanical reaction of elements which par
ticipate actively in the contraction (for the rôle of the sarcolemma 
see p. 110). Curve 2 in the same figure shows the course of 
relaxation after isotonic contraction at the same load (0.2 Po, 
0° C.) as applied during transient extension at rest. A comparison 
of these two curves, in which the same passive shunting elasticities 
were involved, shows that the visco-elastic resistance to elon
gation, as it manifests itself in transient experiments, can only 
be an insignificant delaying component in the course of relaxation 
after contraction.

The difference in the course of the curves, however, cannot 
be interpreted as evidence of an active relaxation, since it can 
equally well mean that the process of contraction does not 
disappear abruptly at the end of stimulation, and that some 
substance still is found in the contracted state some time after 
stimulation has been interrupted. The S-shaped course of the 
relaxation curve thus expresses the statistical distribution of the 
times for the transition of the different elements from contraction 
to rest. The course of the curve does not permit a decision 
whether this time is due to active or passive processes.

Since Kühne (1859) described that a muscle contracted on a 
surface of mercury, i. e. without influence of external deforming 
forces, does not straighten again, relaxation in a tensionless 
muscle has been of importance in the discussion of active or passive 
relaxation. Kaiser (1900) repeated these experiments and re- 

Dan.Biol.Medd. 21, no.7. 13 
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duced the friction of the muscle by surrounding it with a film 
of olive oil and found that the muscle rapidly regained its equili
brium length after the end of stimulation. The muscle returned so 
rapidly to its original shape that Kaiser considered this to be 
caused by elastic forces. However, in experiments on whole 
muscle Hill (1949e) was recently able to confirm the findings of 
Kühne that the muscle retains its contracted length after the end 
of stimulation. Using the latent period as indicator, which in 
spite of the short length is not increased, Hill concludes that 
the short length at rest is caused by a real shortening of the fibre 
and not by “slack”.

The single fibre, which at rest hangs tensionless in a loop 
between two suspension points in Ringer’s solution and shortens 
during contraction, regains its original length immediately after 
the end of the stimulation (Ramsey, cit. from Fenn 1945). This 
observation, however, can hardly give any contribution to the 
problem of active or passive relaxation. The contractile substance 
itself must be assumed to have a natural length to which it returns 
after the end of the contraction.

The unloaded length of the fibre is determined by the equili
brium between the tension in the fibrils and the longitudinal 
forces arising in the sarcolemma (see p. 117). Thus, the equili
brium length of the fibrils is not necessarily identical with the 
equilibrium length of the fibre. A radial pressure exerted by 
the sarcolemma at equilibrium length will normally be sufficient 
to elongate the fibre after a contraction in the tensionless state.

Hill (1949 d) has calculated the straightening elastic force 
which e. g. can arise on account of differences in the colloid- 
osmotic pressure in the fibre and the surrounding fluid, and 
found that this force, which is of the same order of magnitude 
as the weight of the fibre, would be sufficient to explain the 
spontaneous alignment found by Ramsey. This interpretation, 
however, cannot apply to experiments which we have per
formed with the fibre suspended in Ringer with the same colloid- 
osmotic pressure as plasma; also in these experiments we found 
that the fibre resumed its initial length immediately after the end 
of stimulation. Experiments in which the elastic forces in the 
resting fibre (length 110—120) were measured in Ringer’s solution 
and in a moist chamber in air, demonstrated the presence of an 
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aligning force in the single fibre and in small fibre bundles large 
enough to cause return to the resting length. With the fibre bundle 
in Ringer at a low load, a stillness could be measured which was 
up to 40 per cent higher than the stillness of the fibre in the 
moist chamber in air (p. 28). The difference in stillness corresponds 
to a change in load equal to several times the weight of the 
fibre. These experiments show that a force large enough to cause 
alignment really occurs when the fibre is in Ringer’s solution. 
When the fibre is placed in air, this force is probably counter
acted by the surface tension in the Ringer film, which still sur
rounds the fibre. The fact that a whole muscle does not show 
the spontaneous relaxation means that the aligning force cannot, 
as in the fibre, overcome the mechanical hysteresis. The lack 
of an external elongation may consequently be due to an in
creased hysteresis or decreased forces of alignment. A defor
mation in the pattern of the connective tissue during shortening 
can cause an increased resistance to elongation. On the other 
hand, the fact that the fibres of the whole muscle can be com
pressed without curling (see p. 136) may cause a decreased 
resistance to shortening by the locking, and consequently weaker 
forces will be present for an elongation during relaxation.

An important argument, apparently in favour of passive 
relaxation, is Hill’s (1949 b) finding that heat production during 
relaxation of a tensionless contracted muscle is zero, and that 
heat production during a relaxation proceeding under load, does 
not measurably exceed the energy which is introduced from 
outside (increase in length X tension).

As previously described during the discussion of “locking” 
(see p. 155), a marked internal resistance which considerably 
exceeds the external forces, develops in a contracting fibre. This 
tension must cause a large internal work of deformation, which may 
appear as heat during relaxation. During the tensionless relax
ation it might, therefore, be assumed that the external heat pro
duction is zero, because the expected heat of deformation is 
compensated for by a negative heat production, assumed to be 
connected with the process of relaxation. Also during relaxation 
under tension a considerable internal work of deformation must 
be released as heat, in addition to the work of deformation in
troduced from outside.

13*
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Apart from the “spontaneous” relaxation after the end of 
stimulation, described here, there are indications that during 
tetanic stimulation an additional relaxation may be enforced by 
a load considerably in excess of Po (Hill 1939). This relaxation 
similarly might be assumed to be connected with a negative heat 
production. The heat production during stretching of an activated 
muscle with a tension between Po and 2 Po is less than the work 
involved (Hill 1937, 1938, Fenn 1923, 1924, Aubert 1948). Thus, 
it is possible to measure a negative heat of shortening, which 
according to the considerations given here, corresponds to the 
negative heat of relaxation. The unexpectedly low heat production 
on stretching means that part of the mechanical energy introduced 
increases the potential energy of the structure or becomes trans
formed into chemical energy. Part of the heat released in the 
muscle as initial heat must thus be expected to be re-absorbed 
in the relaxation phase.

It is obvious from the preceding discussion that neither the 
study of mechanical properties nor the measurement of heat 
production can give an unambiguous answer to the problem of 
active or passive relaxation. On the other hand, in view of the 
theory for the mechanism of contraction developed in a later 
section of this paper, it seems rather doubtful that this is a 
pertinent question when dealing with the problem of relaxation. 
According to this hypothesis the contractile substance is assumed 
to consist of minute structural chains with elements which may 
occur in two states of equilibrium, a short and a long one. The 
energetic potential of these two states will be of the same order 
of magnitude. Contraction is defined as an increase in probability 
of the occurrence of short linkages in proportion to the long 
modification. Hence, contraction and relaxation are considered 
only to be consequences of changes in probability of these two 
states. On this basis it will hardly be meaningful to talk about 
active or passive relaxation.

Work and rate of work production.1
The area between the length-tension diagram at rest and the 

curve for the isometric maxima represents theoretically the upper
1 A preliminary report of these experiments has been given in Acta neurol. 

psychiat. 1949, 24. 333.
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limit for the net work which a fibre is able to perform during 
a cycle of work, i. e. stretching from zero tension to maximal 
tension at the indifference point (negative work) followed by 
active shortening (positive work). However, this would be valid 
only if the tetanic shortening followed the curve for the isometric 
maxima (with due regard to the elastic aftereffect). This, how-

Fig. 87. Work as a function of the load in isotonic tetanic contraction and in release 
from isometric tetanic contraction, release velocity 0.2 £0 per second, 0° C.

The inset length-tension diagram in the right corner shows the areas for work 
beginning at the resting point a. Work during isotonically started contraction 
corresponds to the area within points abcda, work during release contraction 

to the area a d a.
ordinate: work in units of PoxLo. 
abscissa: initial load at rest in units of Po.

ever, is not the case. Even if sufficient time is allowed for com
plete adjustment of the tension to the new length, the tension 
during release is considerably lower than that reached in the 
isometric maximum (locking, see length-tension diagram during 
release, p. 130).

In the following section an account is given of the part played 
by the mechanical conditions present at the onset of contraction 
for the net amount of external work. For this purpose a com
parison has been made between the external net work in iso
tonically started contraction (corresponds to a—b in fig. 87) and 
an isometrically attained contraction (corresponding to a—bj). The 
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initial phase of the isotonic contraction is characterized by a con
stant tension and shortening velocity, and hence work is produced 
with constant velocity. When initiated isometrically the con
traction is characterized in its initial phase by constant length, 
increasing tension, and storage of elastic energy. In the sub
sequent release phase Çb1—c± and b—c) the remaining part of

Fig. 88. Net work per working cycle performed during release from isometric 
tetanic contraction at different velocities of release. 0° G.

curve I: net work at total release, work represented by area ableclda in inset 
length-tension diagram. Release velocity 0.2 Lo per second.

curves II—IV: work during release from isometric tetanic contraction to the 
same tension as initially present at rest (area ab^e a).

release velocities: curve II 0.2 Lo per second, curve III 0.4 Lo per second, curve IV 
0.8 Lo per second.

ordinate: work in units of PoxLo. 
abscissa: initial length in per cent of Lo.

the work is liberated which contraction can produce. It consists 
partly of stored elastic energy, and partly of energy originating 
from continuation of the contraction process during continued 
stimulation. In contraction which is evoked during isotonic con
ditions the net work corresponds to the area of a b c d a, and in 
isometric release contraction to the area a br cx d a. Fig. 87 shows 
the work under these conditions as a function of lhe initial 
load and with a release velocity of 0.2 Lo per sec.

At a high initial load the net work was largest during a contrac
tion which was started isotonically. The curve had its maximum at 
0.65 Po and the work, in units of Po X Lo, was 0.60. The position of 
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the maximum here corresponded to length 200. At a load 0.4—0.5 Po 
the work was the same during both types of contraction, and 
at a low load the work was largest during an isometrically in
duced contraction. In this case the maximum occurred at an initial 
load of 0.25 Po, corresponding to a length of 180 and was 25 per 
cent lower than the maximal work during contraction started 
under isotonic conditions.

The work liberated in contractions which were isometrically 
initiated, apart from the initial load, depended upon the velocity 
of the forced changes in length. The total work decreased with 
increasing velocity. Curve I in fig. 88 shows the work expressed 
by the area a bt ct d a performed at a relative velocity of 0.2 L0/sec. 
Curve II represents that part of the area which lies above the 
tension at rest (u e a) and is obtained at the same velocity as 
curve I. The influence of the velocity on this area is shown in 
curve III (V = 0.4 Å0/sec.) and curve IV (V — 0.8 L0/sec). At 
lengths above 170 there is no recognizable difference in network 
at the three velocities, and e. g. at length 180 a work of 0.2 Po X Lo 
could be obtained which was independent of the velocity. It might 
be supposed that this was caused by the increased release of 
stored elastic energy in this range of length. However, from the 
linear stiffness-load relation and with a relative stiffness of 30 L^1 
at most a work of 0.015—0.03 PtxL*  could be expected. During 
sudden release of whole muscle Hill (1950) found tension over 
only 2—3 per cent of the “natural length’’, i. e. 3—5 per cent of Lo. 
The work obtained hereby is only 0.015—0.025 Po X Lo, hence, 
considerably less than the work which does not vary with the 
velocity (see also p. 125). The fact that part of the work is in
dependent of velocity (fig. 88) can be explained by assuming

* Assuming a stiffness-load relation:
dP
dL ~x(P + Pst)

the work W liberated during release from load P1 to P2 will be:

P2 + Psi
Putting « = 30 Lo 1 and Pst = 0.05 Po one obtains for Pr = Po and P2 = 0:

IV = 0.028 PoxLo 
and for P1 = Po and Pt = 0.5 Po:

IV = 0.0155 PoxLo. 
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that there is less time for the manifestation of locking, the higher 
the release velocity. Thereby the inhibiting influence on the 
amount of work released is concealed. At lower initial length 
the velocity of the contraction process itself begins to influence 
the amount of energy released, probably because locking is 
developed more slowly at lower length (fig- 67). The decrease 
in the total external work with rising release velocity is in agree
ment with the observation that the shortening velocity decreased 
with increasing load. This relation implies on the other hand, 
that the muscle force—and hence also the work performed— 
must decrease with increasing velocity.

As a special type of work performed partly under isotonic 
conditions, the work produced in afterload contractions was 
examined. Here the total shortening, referred to the isotonic 
load, was less than during isotonic contraction (see p. 130). 
Hence, the net work was less than the work which started under 
isotonic conditions, and the difference was relatively greater, 
when the length was limited at low degrees of stretch and when 
the load was high.

The amount of work absorbed when a tetanically contracted 
libre was stretched, exceeded essentially that liberated in isotonic 
tetanic contractions or afterload contractions. The tension in the 
former slightly exceeded Po, i. e. rose above the curve of the 
isometric maxima. Thus, the work absorbed in stretch during 
contraction was considerably larger than PjXdL.1 In isotonic con
traction and in release contraction from initial load 0.5 Po the 
total work produced was approximately 0.45PoxLo with a 
change in length of 100 per cent of Lo (0° C., fig. 87). For the 
same change in length the work absorbed in stretch during tetanic 
contraction was 1.2PoxLo> Thus, in order to perform the same 
amount of work in isotonic or afterload contraction on the one 
hand and in stretch contraction on the other, in the latter only 40 per 
cent of the fibre mass is necessary as compared w ith the former.

The force-velocity relation (Hill 1938), even when corrected 
for forces > Po (Katz 1939), can only account for a minor part 
of the difference between the two types of work. This is illustrated 
by the following example:

Comparing the work done by the brachial biceps during raising
1 A L = elongation.
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and lowering of the body in two subjects we found that the lower
ing, which was performed with the same velocity as the raising 
(within 5 sec.), was carried out at least three times more easily, 
using fatigue or the integrated number of action potentials as a 
measure. In recent experiments Asmussen (1951) has demon
strated a difference of the same order of magnitude when the 
oxygen consumption was used as a measure of the intensity 
of work. To simplify the comparison, the differences in torque 
during different phases of the work were disregarded and 
constant load was assumed during both raising and lowering. 
Assuming that the change in length of the biceps muscle 
during raising and lowering of the body maximally is 30 per 
cent and the time allowed for the movement in each direc
tion was 5 seconds, the mean velocity will be 0.06 muscle 

p
lengths per second. With — = 4 and b = Ï muscle length (Hill 

1940) the tension during body raising will be 0.93 Po and during 
body lowering 1.40 Po. During lowering of the body some of the 
libres go out of action and the remaining fibres, for a longer 
or shorter period, are under a load > 7%. In this comparison it 
is taken into consideration that for P > PQ the force-velocity re
lation no longer follows Hill’s equation, the slope of the curve 
being considerably reduced (Katz 1939). Thus a difference in 
work of maximally 50 per cent can be accounted for. However, 
actually the difference is at least 200 per cent and, as mentioned 
above, it can be explained without difficulty by the differences 
in the length-tension relation during afterload contraction (body 
raising) and stretch contraction (body lowering). The former 
proceeds along a length-tension diagram which is considerably 
lower than that of the isometric maxima. Therefore, in order to 
lift the load, a larger number of fibres must be put into action. 
During lowering, fewer fibres can equilibrate the same load.

Rate of work production.
In isoIonic contraction the rate of work production (measured 

in Po X T^o/sec.) was calculated as the product of shortening 
velocity (V) in relative units and the corresponding relative load. 
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A discussion of the maximal shortening velocity as a function of 
load and temperature was given in an earlier section (see p. 148, 
175). The maximum of the rate of work production lay at load 
0.3 to 0.4 Po, i. e. at half the load required for maximal total 
work.

During isometric release contraction with constant forced release 
velocity, the determination of the velocity of work is encumbered 
with difficulties. During release work is liberated partly on account 
of active shortening and partly on account of stored elastic energy 
accumulated during the rise in tension in the initial isometric 
phase. Since it is impossible to distinguish between these two 
effects during release, the mean velocity of work production was 
used as a measure of the rate of work production. The mean 
rate of work production is defined as the total work divided by 
the time taken to perform this work. The time necessary for the 
isometric increase in tension (0.1 sec.) was also included in this 
time. A comparison between the rate of work production in 
isotonic contraction and in isometric release contraction, necessi
tates investigation of the mean rate of work production in isotonic 
contraction as well. In the isotonic contractions we have used a 
contraction period of the same duration as that used in isometric 
release contraction (0.5 sec.). In both isotonic contraction and 
isometric release contraction, the maximal mean rate of work 
production was reached at an initial load of 0.3 to 0.4 PQ. The 
rate of work production amounted to about 0.3 PQxL9 per sec. 
Fig. 89 shows the way in which the rate of work production 
decreased during isometric release, when lower relative velocities 
were used (0.4 and 0.2 Lo per sec.). On release with velocities 
of < 0.2 Lo Per sec. the r^te of work production decreased linearly 
with the release velocity. Independent of the release velocity, the 
rate of work production had its maximum at an initial load of 
0.3 to 0.4 Po.

The rate of work production in whole muscles determined 
during isotonic contraction, varied as a function of the load 
similarly to that found in single fibres or small bundles. The 
maximum also lies at 0.3 to 0.4 Po, but the maximum in a whole 
semitendinosus muscle is only 0.2 Po X Lo per sec. However, this 
is higher than the maximum in sartorius muscle, for which we 
found a maximum rate of work production o f 0.125 LoxPo per 
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sec. These results show that, at the same load, the rate of work 
production in the single fibre, is considerably higher than in whole 
muscle. The difference between fibre and whole muscle decreases 
the more uniform the fibres of the muscle are with regard to relative

Fig. 89. Rale of work production in a single fibre (from m. semitendinosus) and 
in the total muscle (in. semitendinosus and in. sartorius). Release from isometric 
tetanic contraction with different velocities of release (0.2, 0.4 and 0.8 Lo per 

second) averaged over the first 0.5 seconds of a contraction. 0° C.
O------- O —  ----- O isolated fibre, isotonic contraction,
initial rate of work calculated from initial shortening velocity.
X--------X---------X whole sartorius, isotonic contraction,
initial rate of work calculated from initial shortening velocity.

ordinate: rate of work in units of LoxPo per second. 
abscissa: initial load in units of Po.

length and the more of the fibres are aligned in the longitudinal 
direction at equilibrium length.

The results shown in fig. 87 and fig. 89 were obtained on 
the basis of shortening and tension in experiments with con
tinuous tetanic contraction. Previous experiments have shown 
that an increase in the yield of work of up to 50 per cent could 
be obtained when the stimulation was interrupted for a short 
period during a release contraction. This additional work was 
obtained in spite of the fact that the fibre was desactivated during 
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part of the total period of work (Buchthal 1942). The cause of 
this difference was considered to be the limiting influence which 
the locking had on shortening in a continuous cycle of work 
whereby the yield of work is reduced. The locking is interrupted 
when the stimulation ceases, and hence correspondingly higher 
values of external tension and work were obtained.

The external work of the single fibre during contraction is 
in all cases less than the total work done by the contractile 
elements. At identical initial and final load and length the vari
ations in work caused by a change in the mechanical working 
conditions are attributed exclusively to the influence of the 
external conditions on the textural pattern. This pattern is 
assumed to change during the development of the contraction 
and it is this change which reduces the external effect of the 
reaction of the active elements. The sooner after stimulation the 
fibre is allowed to shorten, the less stabilization has been reached 
in the texture and the less the limitation by the passive elements. 
This causes the external work to be larger.

The types of work production described above represent 
special cases, and all transition types occur in the organism. 
Isotonic work corresponds to carrying a load or to slow walking, 
isometric release work, and work during afterload contractions 
corresponds to work in which a mass is accelerated from 
velocity zero, e. g. as in a jump. The maximum for both types 
of work investigated lies at a high degree of stretch (length 180 
and length 200). Even if there are whole muscles which in 
nature cannot attain this elongation, some of their individual 
fibres which often do not run through the whole length of the 
muscle may exhibit the degree of stretch necessary to obtain 
maximal values of work. An elongation of the whole muscle of 
50 per cent may thus correspond to an elongation of 100 per 
cent or more of some of its fibres.

Comparing the isolated fibre with the whole muscle, the 
geometric arrangement of the fibres and their relation to the 
pattern of connective tissue has to be taken into account. In the 
cases in which connective tissue shunts contractile substance, the 
types of contraction at a definite degree of stretch may be changed 
from an isotonic to an “internal” afterload contraction. The 
stiffness of the connective tissue acts as a stop for the length of 
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the fibres. The connective tissue which occurs in series with the 
contractile substance causes the velocity of development of tension 
in isometric contraction to be delayed by the work which the 
fibres must perform in order to stretch the passive substance. 
Passive series and shunt elasticities are naturally more pro
nounced in a whole muscle than in the single fibre and reduce 
the maximal tension, shortening and rate of work production of 
the muscle as compared with the fibre (see p. 134).

The mechanical reaction of the fibre as reflected in the 
contractile elements and in the texture.

In the previous sections the mechanical reaction of the fibre 
has been interpreted as shortening of active elements modified 
by the texture in which they are organized. During activation 
the mechanically active part of the fibre has a characteristic 
dependence between shortening velocity and load (fig. 90, 7). Owing 
to the inhibiting influence of the texture the shortening velocity 
of the active element is assumed to exceed that which is found 
externally. The manifestations of inactive substance are inter
preted partly as arising from the presence of actually passive sub
stance and partly from secondary interactions between adjacent 
chains of contractile elements (entanglements, fig. 90, 2). These 
points of entanglement are distributed at random and slack 
chains (4) occur between the points. On activation the slack 
chains will tend to catch up with the taut ones (3). Hereby the 
intrinsic tension in the structure will increase both longitudinally 
and transversally. This increase in the tension will cause a 
higher resistance towards both an increase in length and in 
cross-section, i. e. it will impede shortening. The gradual disappear
ance of slack which occurs on activation will by the better align
ment of the structure cause an increase in longitudinal orientation 
(«i). Simultaneously chains which are orientated transversely (u2) 
when activated will cause an increase in transverse stiffness. 
The initial rise in the ratio between the transverse and longitudinal 
moduli which occurs at an early time after the onset of contrac
tion indicates that lhe resulting effect is an initial decrease in longi
tudinal orientation (Sten-Knudsen 1950). Thereafter the longitu
dinal orientation increases. This increase which occurs with deve-
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Fig. 90. Pattern of minute structure in a muscle fibre and its mechanical analogue. 
ax: two contractile chains with long range elasticity with three points of entangle

ment, one example marked with circle 2.
(1) and (3) parts of the chains under stress,
(4) part of the chain with slack.

Z>x: (1) corresponds to contractility in chains under stress (1 and 3 in ax),
(2) symbolizes viscosity caused by rearrangement in points of entanglement 

(e. g. 2 in ax),
(3) longitudinal elasticity in elements under stress (1 and 3 in ax),
(4) shunt elasticity caused by the variation in slack (4 in ax),
(2) , (3) and (4) act as series components to the contractile component (1). 

a2: molecular pattern accounting for shunt elasticity during contraction. Two
contractile chains entangled at (5).
(3) part of chain which gives rise to strong transverse structural forces, 

when the fibre diameter increases during shortening.
(4) parts of the chains with slack.

b2: bar-polygon (6) symbolizing the resistance against an increase in cross section 
converted to a shunt element impeding shortening.
(5) catch mechanism with series viscosity symbolizing entanglement (5 in a2), 
(3) series elasticity in the catch mechanism (corresponding to the elasticity 
3 in a2).

b2 acts as a shunt to b1 impeding its mechanical reaction.

loping contraction is considered to be caused by the “slip” 
in the texture which occurs with increasing intrinsic tension. 
Thereby a better alignment of elements will be produced and 
a sharp decrease in transverse stillness relative to the longitu
dinal one.

On account of the practically constant volume, the shortening 
is accompaincd by a corresponding increase in cross-section. In the 
equivalent diagram the transmission between transverse forces 
and longitudinal forces is symbolized by a rhombic structure 
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with articulating joints (6) which represents the increase in 
diameter on shortening.

When new points of entanglement are loaded during the devel
opment of contraction, disruptures occurring at random will cause 
an increase in orientation and length by rearrangements, and hence 
be shown externally as series elasticity (2, 4, and 3 in cq and br, 
fig. 90.) and as shunting elasticity (3 and 5 in a2 and Z?2) of a 
markedly viscous character. The viscosity is a result of the time 
necessary for regrouping. The difference in the textural pattern 
shown in the diagram between series (aß) and shunt (a2) elasti
cities is schematic. In reality, as mentioned above, a random 
mixture of more or less longitudinally and transversely orientated 
structural elements must be considered. In connection with points 
of entanglement, slack causes a viscous series elasticity (longitudinal 
orientation, alt bß) at one point of the structure and an increased 
shunting stillness at another point (transverse orientation, a2, ô2).

According to the interpretation given here, the stillness during 
contraction is a complex quantity and is the result of an inter
action of the following three factors: a change in the geometric 
pattern of the texture during activation, a rise in the number of 
activated elements, and a rise in the stillness of the contracting 
elements themselves. Hence, the early maximum in stillness cannot 
be considered to be an indication of an initial maximum intensity 
of activation.

Chemical findings likewise suggest the establishment of a 
more rigid textural pattern during contraction. (I)ubuisson 1950 
a, b). This is concluded from the change in extractibility of 
the structural proteins. In the contracted state myosin ß and 
protein y are non-extractable by 0.6 M KC1, which extracts 
these proteins in the resting muscle. Moreover, a new protein 
(myosin y = “contractin’’) appears. These changes are consi
dered to indicate the formation of new and more solid linkages 
between the components of the structural proteins.
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Summary of Experimental Results.
The object of the present paper is a study of rheological 

properties of the resting and the activated muscular substance. 
The experiments were performed on isolated fibres or small 
bundles of frog’s semitendinosus representing the smallest 
functioning unit which can be isolated from a living striated 
muscle. In spite of the fact that the isolated muscle cell un
doubtedly is examined in an environment different from the 
physiological, the influence of which it is difficult to evaluate, the 
study of the isolated muscle fibre involves many obvious ad
ventages. Thus, in the analysis of mechanical properties part of 
the complications are avoided which naturally arise from the 
pattern in which the fibres are organized in the whole muscle, 
such as the transmission of the mechanical effects to the outside, 
a non-uniform state of stretch in different fibres, connective 
tissue, etc. Moreover, it is possible to select fibres with a constant 
cross sectional area and the small diameter of the fibre allows 
fast transmission of heat and fast diffusion from or to the sur
rounding medium. Consequently, the use of isolated fibres brings 
about essential advantages both experimentally and in the eva
luation of the experimental results.

The study of rheological properties comprises static ex
periments, iranszenZ-experiments, i. e. an analysis of the course of 
adjustment after quick stretch or quick loading, and vibration ex
periments, i. e. the application of periodic changes in length or load 
with different frequencies of vibrations. The temperature used in 
most of the experiments was 0°C., being referred to as a standard 
condition.

with increasing load. Therefore, the static stiffness

The resting muscle fibre.

The tension of the resting muscle fibre increases exponentially 
(S in‘ 

creases linearly with the load. Within a range of elongation which 
must be assumed to represent physiological conditions, i. e. up 
to 70 per cent of stretch, the tension of the fibre is essentially 
the result of the fibrillar substance. The sarcolemma hardly 
contributes to tension until stretch exceeds 50 per cent of the 
equilibrium length (Casella 1951).
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The stationary value of tension increases with increasing 
temperature, the increase being maximal at 20 per cent of stretch 
(Buchthal et al. 1944a). In the application of simple thermo- 
kinetical considerations it is necessary to remember that the 
temperature coefficient is always less than that which corresponds 
to a proportionality to the absolute temperature.

The hysteresis in the mechanical properties as it is revealed 
e. g. in recording the length-tension diagram with increasing and 
decreasing load was systematically investigated by applying 
sudden changes in load or length to the fibre (transients). The 
variation in load (/'I P) as compared with the initial load (P) 
was examined for values which varied between 0.1 and 3, the 
maximal value of d P being 0.5 Po and the minimum value 0.04 Po. 
It could be demonstrated in these experiments that the time 
delay in the mechanical adjustment, i.e. the elastic aftereffect, 
can account quantitatively for the hysteresis. Over a large interval 
of time the velocity with which the new length adjusts itself after 
a quick loading or unloading varies approximately in inverse 
proportion with time. This course of adjustment, which can be 
followed from less than 10 msec, to several minutes after the 
transient, is described by means of a distribution of retardation 
times in a Voigt-model. The spectrum of retardation times 
extends over several decades. There is good agreement between 
the changes in length after a sudden increase and after a sudden 
decrease in load, the constants characterizing the course of adjust
ment in both cases being approximately identical. At a high tem
perature (25° C.) the adjustment within the first 10 msec, after 
the transient occurs faster than at 0° C. and thereafter more slowly. 
In the Voigt-model this behaviour corresponds to an increased 
representation of short retardation times.

However, even when small changes in load are applied, 
there are properties which cannot be appropriately described by 
a Voigt-model. The fibre exhibits thixotropy, both in the initial 
phase of stretch during a transient loading and in the efTect of 
repeated transients on the stillness. In the initial phase of a 
transient loading the mechanical reaction of the fibre is dominated 
more by a viscous resistance than by elasticity as compared with 
the vibrational elasticity measured with the same change in load. 
Repeated quick loadings cause a transient decrease in stiffness.

Dan. Biol.Medd. 21, no.7. 14
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The original stillness is regained after a recovery period of a 
few minutes.

In vibration experiments performed at a constant mean load 
(“isotonic”) it was possible to differentiate accurately between 
elastic and viscous components in the mechanical reaction. As 
a measure of these properties we have used elastic and viscous 
stiffness determined at the resonance frequency of the oscillating 
system, in which the muscle fibre provides the directional force 
and the inertia corresponds to the equivalent mass of the recording 
system at the point of attachment of the fibre. The damping is pro
duced by the “viscous resistance” of the fibre. At resonance the 
inertial forces of the system equilibrate the elastic forces of the 
fibre. Therefore, elastic stiffness is mXco^, where co0 represents the 
cyclic vibrational frequency at resonance and m the equivalent 
mass. At resonance the viscous resistance of the fibre is in equili
brium with the external force applied and viscous stiffness is 
defined as the ratio between the external force and the vibrational 
amplitude produced by it. The vibrational stiffness was found to 
be of the same order of magnitude as that found from the initial 
elongation produced by small transient changes in load. Imme
diately after a sudden change in load the vibrational stillness 
exceeds its adjusted value by approximately 50 per cent. This 
final value is obtained in the course of several seconds. Elastic 
stiffness increases linearly with the load. Over the range of frequen
cies examined (25—150 c.p.s.) it varies only insignificantly with 
the vibrational frequency, while viscous stiffness increases with 
increasing frequency. A decrease in vibrational frequency to one 
fourth causes a decrease in viscous stillness of 25 to 50 per cent.

In a standard fibre 1 cm long the dynamic elastic stiffness at 
0° C. amounts to 18—20 dynes cm~1 per dyne load (vibrational 
amplitude1 1 per cent of Lo, frequency 25—100 c.p.s.).

The elastic stillness decreases with increasing amplitude of vi

brations. Expressed hy-ryr -—the amplitude dependence d (log amplitude) r
for vibrational amplitudes of 0.5 to 2 per cent1 of the equilibrium 
length at low loads amounts to 0.3 and at high loads decreases 
to 0.1. The amplitude dependence cannot be accounted for by

I peak to peak
2 ‘ 
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the non-linear course of the length-tension diagram, but is ex
plained by assuming that the number of loaded minute structural 
elements varies within the period of vibration. The average 
number of elements participating in the load during the oscil
lation will decrease with increasing vibrational amplitude, i. e. 
slack will occur in a larger part of the period of oscillation. 
Thixotropy originating from slack will enhance this effect.

The dynamic elastic stiffness varies considerably more 
with température than the static tension. With increasing tempe
rature the elastic stiffness decreases on an average 1 per cent 
per C.

Dynamic viscous stiffness is of the same order of magnitude as 
the elastic stiffness, but its temperature coefficient is twice as large 
(2 per cent per °C.). The temperature dependence is most pro
nounced at low loads. Viscous stiffness increases with increasing 
load as well, but less than proportionally to the load. As a function 
of the amplitude, viscous stiffness has a maximum around ampli
tudes of 0.1—0.4 per cent of the equilibrium length.

A decrease in the water content of the libre causes an in
crease of both elastic and viscous stiffness, while an increased 
water uptake does not produce significant variations in these 
quantities. This means that at the normal osmotic concentration 
that part of the structure which is deformed by the mechanical 
vibrations is fully hydrated and water acts as a “plasticiser”. 
The viscosity measured by vibrations or in transient experiments 
is a structural viscosity, the resistance produced by the viscosity 
of the sarcoplasm (Rieser 1949) being more than 10000 times 
less. The sarcolemma tube as such gives hardly any signifi
cant contribution to the viscous component of the structural stiff
ness, delayed elasticity being here much less pronounced than in 
the intact fibre. Moreover, the difference between static and 
dynamic stiffness is less in the sarcolemma tube than in the intact 
fibre. In the latter dynamic stiffness (vibrational frequency 25— 
150 c.p.s.) exceeds the static by 3—5 times. The static stiffness is 
measured by differentiation of the adjusted length-tension diagram 
and the static modulus of the resting fibre at equilibrium length 
amounts to 0.50—0.63 X 106 dynes per cm2. The dynamic modulus 
with the resting fibre at equilibrium length was 2.5 X 106 dynes 
per cm2 (0° C., vibrational frequency ca. 30 c.p.s., vibrational am- 

14*  
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plitude 1 per cent of Åo). The difference between dynamic and 
static stiffness decreases with increasing load. The transition from 
dynamic to static conditions can be derived from the course of 
adjustment in transient experiments and is described by the Voigt- 
model mentioned above.

The analysis of the mechanical reaction of the resting muscle 
fibre thus reveals that there are delayed mechanical adjustments 
with retardation times extending over an interval from 0.1 msec, 
to several minutes. The slow adjustment is considered to arise exclu
sively from transitions in the texture of the fibre, i. e. the pattern 
in which the minute structural elements are organized. The short 
retardation times taken together with the relatively high degree 
of orientation in lhe unloaded fibre indicate that the adjustment 
occurs within the minute structural elements as well.

The muscle fibre has rubber-like elasticity, and the organi
zation of its minute structure involves the assumption of trans
verse forces. Their existence is proved by measurements of 
torsional stiffness. This exceeds that of an ideally parallelized 
anisotropic substance without points of entanglement by twenty 
times at low degrees of stretch and by 5 times at length 200 
(Sten-Knudsen 1950). Thus, in the muscle fibre there are essen
tial deviations from a pure parallel orientation of the structure. 
Compared with the longitudinal modulus the torsional modulus 
in a muscle fibre is ten times less than in a randomly orientated 
isotropic body (Sten-Knudsen 1948).

The transverse forces are considered to arise from defor
mations in the structure between its points of entanglement in 
the incomjiletely parallelized substance. These points of entangle
ment cause a non-uniform distribution of tension in the dif
ferent minute structural elements and under certain conditions 
only part of the structure will participate in the load. Especially 
at low loads an essential part of the structure will consist 
of slack elements. With increasing elongation the number of 
loaded elements will increase, slack will decrease, resulting in a 
higher degree of mechanical anisotropy. In the range of small 
loads the increase in stillness with load can be accounted for 
by an increase in the number of minute structural elements 
which participate in the load. Assuming the presence of slack, 
it is possible to account quantitatively for the large variation of
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elastic and viscons stillness with the vibrational amplitude. The 
fact that this amplitude dependence increases with increasing 

.st1 indicates moreover that an increasing viscous stillness prevents 
adjustment of the slack which arises within an oscillation period. 
Finally, on this basis it is possible to explain the mechanical 
and thermal changes which occur at an early time after the 
activation.

The contracted muscle fibre.

The length-tension diagram of the isolated fibre in the tetanic 
contraction, i. e. the curves of the isometric and isotonic maxima 
have an S-shaped course. The isotonic maxima always lie below 
the isometric, and the curve of release contractions2 is still lower 
than that of the isotonic maxima. These differences are not the 
result of an incomplete final adjustment caused by insufficient 
time to adjust (cf. also the difference between afterload and stop
contractions). The reduced external tension obtained when the 
fibre shortens as compared with the tension which develops under 
isometric conditions is explained by an internal resistance arising 
from the stabilization of the textural pattern in the development 
of a contraction (elastic locking). Thereby the shortening is in
hibited. Thus, differences in the initial adjustment during con
traction determine the tension arising under the different con
ditions for contraction. The increased resistance in the texture 
develops gradually during contraction and is most pronounced 
when tension is developed over a long period of time before the 
fibre is allowed to shorten and when shortening occurs slowly. 
The maximal tension in tetanic contraction at 0° C. amounts to 
2.75 X IO6 dynes per cm2 and increases approximately 1 per 
cent per degree C. with rising temperature. The shortening at 
0° C. in tetanic contraction amounts to approximately 100 per 
cent of the equilibrium length (load 0.1 Po) and increases 20 
per cent when the temperature rises to 25° C. The temperature 
dependence of shortening increas.es with increasing load. The 
variation in shortening, produced by a change in temperature 
occurs with a significant delay in time. This hysteresis is not 
due to delayed temperature transmission to the fibre substance,

, viscous stiffness1 sr = -------------------- .elastic stiffness
2 Release from isometric contraction to the same tension as at rest. 
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but indicates a delayed adjustment of temperature-dependent 
equilibria in the texture.

Adjustment to the new length after quick loading or unloading 
applied during contraction displays a smaller initial change and 
a larger and faster creep as compared with the adjustment after a 
transient in the resting fibre. A change in length, arising in the 
resting fibre from a preceding loading or unloading is neutralized 
much faster by a contraction than would be the case if the ad
justment continued in the resting fibre. Expressed by the spectrum 
of retardation times, the course of adjustment after a transient 
applied during contraction is characterized by a Voigt-model 
with retardation times which extend over a smaller interval 
than in the resting fibre.

During contraction dynamic elastic and viscous stiffness re
ferred to the same tension as in the resting fibre always exceed 
that of the resting fibre by approximately 100 per cent (frequency 
of vibration 25—150 c.p.s.). Static stillness measured by the slope 
of the reversible release diagram from isometric contraction can be 
less during contraction than at rest (Buchthal 1912). The distri
bution of retardation times in the spectrum for the resting and 
the contracted fibre helps to understand this difference between 
static and dynamic stillness during contraction as compared with 
that in the resting libre. With increasing load dynamic stillness 
increases during contraction, but approaches rest at a high load. 
The temperature dependence of elastic stillness during contraction 
exceeds that of the stillness in the resting fibre; it amounts to 
2.0 per cent increase when the temperature falls 1 degree C. 
Viscous stillness varies only slightly more with the temperature 
in the contracted fibre than at rest (2.2 per cent per °C.).

The dependence of stillness on the amplitude of vibration 
is considerably less in the contracted fibre than at rest. It amounts 
to one fifth of the maximal value found in the resting fibre and, 
in contrast to what is the case at rest, in the contracted state it 
does not vary significantly with the load. The decrease in the 
amplitude dependence of the stillness during contraction is con
sidered a sign of the shortening of slack minute structural elements, 
which thereby become aligned. Therefore, the distribution of 
tension in the contracted fibre is more homogeneous than at rest. 
An increase in mechanical anisotropy at the level of tetanic con- 
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traction is also indicated by the change in the torsional modulus 
which decreases as compared with the longitudinal modulus 
(Sten-Knudsen 1950).

Both vibrational experiments and transients applied at dif
ferent times after stimulation show that stiffness develops faster 
than tension and shortening. This initial course of stiffness is inter
preted as being due to the disappearance of slack by the fast 
contraction ot unloaded chains. Thereby more and more ele
ments contribute to the external stiffness and always with a finite 
initial stillness. I he fact that stiffness does not continue to rise 
with the further development of tension or shortening, but passes 
a maximal value early in the course of contraction is explained 
by a yielding in the texture which occurs when the internal 
tension passes a critical value. Direct signs of this “give” in the 
structure have been observed (1) when the fibre is stretched 
during contraction, (2) in the development of the vibrational stiffness 
on the tetanic level of an isometric contraction, and (3) in the 
decrease of the contraction tension when the vibrational am
plitude exceeds a critical value (4 per cent of the equilibrium 
length, peak to peak). Therefore, the maximum in stiffness can 
hardly be considered a suitable expression of a maximum 
intensity of activation, which exists in the initial stage of the 
contraction.

The shortening velocity of the isolated fibre decreases with 
increasing load according to a hyperbolic function and follows 
essentially Hill’s equation (1938), but with different values for 
the constants a and b as compared with those found for whole 
muscle. These constants vary both with temperature and with 
the initial mechanical conditions for the contraction. If the tempe
rature rises from 0° to 25° C., the velocity increases 4—8 times 
according to the initial value of the shortening velocity. As was 
the case with shortening, shortening velocity adjusts itself with 
a lime delay to changes in the temperature of the surrounding 
medium.

1 he non-uniform state of stretch in whole muscle can ac
count quantitatively for the differences in the values for the 
constants a and b found in the fibre and the whole muscle.

The relation between shortening velocity and load is valid 
even when changes in load are introduced before or during 
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shortening. This is demonstrated by quick loadings applied 
at different times alter the stimulus during the course of a twitch.

Tension in isometric contraction develops faster than short
ening under isotonic conditions. In agreement with Hill (1949 d) 
this difference is explained by the effect of a passive element 
acting in series with the contractile substance. The mechanical 
reaction of this element as calculated from the force-velocity 
relation as compared with its reaction at transient loadings indi
cates that viscous properties dominate this element in the initial 
phase of contraction. Hitherto, this element was considered to 
correspond practically to an undamped elasticity (Hill 1949(1, 
1950 b). The finding of a visco-elastic element acting in series 
with the contractile elements makes it impossible to deter
mine the internal tension (P¿) at the peak of tension or shorten
ing in a twitch. In the conception of minute structure arrived at 
in the present paper the properties of the series element are 
attributed partly to the elasticity of the contractile substance, 
and partly to the external effects of transitions in the texture 
subsequent to a change in load or to activation.

In spite of the identity of the initial shortening velocity in a 
twitch and in a tetanic contraction, the maximal shortening in a 
twitch amounts to only half the shortening attained during 
tetanic contraction. In contrast to the assumption that con
traction also initially is maximal in a twitch and that shortening 
here is less because relaxation enters before the tetanic level is 
reached (Hill 1949 d), the present experimental findings are 
interpreted by assuming that contraction develops approximately 
proportionally to time and that relaxation enters about simul
taneously with contraction. The gradual development of con
traction is reflected in the course of shortening with time. Thus, 
large loads will inhibit the development of contraction (= de
creased shortening velocity) and high temperature will facilitate 
contraction (= increased shortening velocity). A single stimulus is 
considered to represent a limited possibility of activation (= short
ening). This assumption is supported by experiments in which a 
transient load is applied to the fibre after the latent period for 
an interval of time which corresponds to half the time necessary 
to reach the peak of shortening in an isotonic twitch (0° C.). 
While the load acts on the fibre, the course of shortening is 
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interrupted, but continues displaced in time after the load again 
is removed, as if the stimulus had been given essentially later 
(“storing” of activation). Furthermore, the limited possibility of 
activation inherent in each stimulus is indicated by experiments 
in which twin stimuli are applied within the latency period. As 
is well-known from experiments on whole muscle, thereby a 
summation is caused of the effect of the second stimulus which 
is displaced in time. The resulting shortening attains its maximum 
in the middle of the relaxation period of the twitch which is 
elicited by the first stimulus. This effect is studied under isotonic 
conditions at a low load and thus cannot be explained by the 
delaying influence of a scries element. The evidence has been 
mentioned above which indicates that the course of stiffness can 
hardly prove an initial maximum intensity of contraction. More
over, the time course of initial heat production (Hill 1950c) is not 
inconsistent with the assumption of a gradual activation during the 
development of the contraction. Heat of activation is supposed to 
arise from the shortening of slack minute structural elements, 
i. e. a heat production which externally will be associated with 
an increase neither in tension nor in shortening. The delayed 
development of heat of activation at high loads (Hill 1950 c) 
could correspond to an alignment of these slack elements.

Relaxation after the cessation of stimulation is interpreted as 
a gradual desactivation. A transient change in load applied to 
the resting fibre, which has the same magnitude as the tension 
developed in contraction produces a change in length different 
in type and of much higher velocity than the elongation which is 
associated with the desactivation after the stimulation is interrupted.

As a function of load, the maximal relaxation velocity deter
mined after a tetanic contraction under isotonic conditions has 
a maximum. At the load at which this maximum is attained, 
the relaxation velocity is of approximately the same order of 
magnitude as the shortening velocity. The relaxation velocity 
varies over a large range of shortening about proportionally 
to shortening, but decreases with increasing duration of con
traction. Fatigue depresses both the shortening and the relax
ation velocity to a much higher degree than it reduces the 
shortening velocity.

At the peak of external shortening (e. g. in a twitch) there 
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is equilibrium between a finite shortening velocity and a finite 
relaxation velocity. This interpretation is supported by the 
correlation which under all conditions examined was found to 
exist between shortening velocity and relaxation velocity on the 
one hand and the ratio between shortening in a twitch and in a 
tetanic contraction on the other. Independent of load, tempera
ture, and degree of fatigue, the shortening in a twitch can be 
predicted from the shortening velocity, the relaxation velocity, 
and the shortening in a tetanic contraction. That a high shortening 
velocity facilitates the shortening in a twitch while a high relax
ation velocity has the opposite effect, is likewise seen from the 
paradoxical variation with temperature which can be observed 
for the shortening in a twitch. While tetanic shortening in
creases with temperature, shortening in a twitch either decreases 
or changes insignificantly with rising temperature. This finding can 
be explained by the 3—4 times higher temperature coefficient of the 
relaxation velocity as compared with that of the shortening velocity.

Active and passive relaxation are discussed and it is concluded 
that mechanical investigations can hardly give a pertinent con
tribution to the understanding of this problem. However, in view 
of the conception developed in the last part of this paper for 
the description of the process of contraction, the problem as 
such no longer seems to be meaningful.

A comparison of the net work produced by the muscle fibre 
during contraction from different initial conditions shows that the 
largest amount of work is liberated in isotonic contraction at an 
initial load of 0.6 to 0.7 Po. This load corresponds to about 
100 per cent elongation in the resling fibre. The maximum 
amount of work produced in an isometric release contraction 
with a release velocity of 0.2 Lox per second is found at an initial 
load of 0.3 Po, corresponding to 80 per cent of stretch. The amount 
of work produced decreases with increasing velocity of release. 
The difference between eccentric (negative) and concentric (posi
tive) work is derived from the differences between the length-tension 
relation for stretch during contraction and afterload contraction. 
The static length-tension diagram of the former exceeds slightly that 
of an isometrically contracted fibre (Buchthal 1942) and is much 
higher than that of isotonic or afterload contractions. The diffe-

1 Lo = equilibrium length.
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ronce is explained by the stabilization in the texture which 
characterizes an isometric contraction (elastic locking). An attempt 
is made to give a quantitative estimate of the internal resistance 
produced in the development of contraction.

As a function of the initial load the mean rate of work production, 
defined as the total amount of work divided by the time during 
which it is performed, has a maximum at 0.2 to 0.4 Po. The 
highest rate was observed in isotonic contraction and amounted 
to 0.3 PoxLo per second (0° C.). The relative rate of work pro
duction of the isolated fibre exceeds considerably that of the 
corresponding whole muscle.

Part IV.
Minute structure and interpretation of 

mechanical properties.
I. Review of experiments on direct minute structure analysis.
Before an attempt is made to interpret the mechanical in

vestigations on muscle fibres in terms of conceptions which have 
been developed for the understanding of the rheology of 
rubber-like substances and high polymers, a short review is 
given of the results obtained with other methods of minute 
structural analysis. These results must form the basis of an 
estimation of the level in the structure at which the deformations 
can be assumed to occur.

Examination of the isolated living fibre with the ordinary 
microscope indicates that apart from the cross striations, there 
is a longitudinal orientation, i. e. a fibrillar structure with a 
diameter of 1—2 p (Buchthal et al. 1936). In electron microscopy 
which implies the use of dehydrated material, the diameter of 
these fibrils was fourni to vary between 0.2—3.2 p, with a 
maximum occurrence of fibrils with a diameter of 1 p (Draper 
and Hodge 1949). These fibrils are made up of fine threads, 
protein filaments, lhe diameter of which varies according to the 
different investigators, but is of lhe order of magnitude of 100— 
160 Å. Owing to the technique of preparation and maceration the 
length of these filaments, as they appear in the preparations for 
the electron microscope, varies considerably. However, in view 
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of the fact that fragments with a length of 2—3 /z are frequently 
met with, the assumption seems justified that the filaments pass 
uninterrupted through one or more compartments (Hall et al. 
1946, Draper and Hodge 1949, Rozsa et al. 1950).

The protein filaments show fine transverse lines, with a 
periodicity of 250—44)0 Å comparable to that found in collagen 
and nerve fibrils. This pattern occurs in the filaments both in 
the A and in the I substance. There are no indications of an in
creased orientation of the filament in the anisotropic substance. 
Possibly the region between two of these fine stripes can be con
sidered the fundamental functional unit of the fibre, but the detailed 
structure of this region, the resolving of which approaches the 
borders of the electron microscope, is mostly a matter for specula
tion. Draper and Hodge (1949) assume it to be made up of 
at least 3 macromolecules of different structure arranged in a 
definite pattern. Since the fine stripes often disappear during the 
preparation, Rozsa et al. (1950) considered them to be caused by 
a material which periodically is glued to the filament, and which 
can be washed off. It also seems wise to be cautious in accepting 
the assumption that the filaments represent tubular structures 
filled with some fluid material. Obviously, the preparative 
treatment of the fibre can give rise to a number of artifacts 
and Rozsa et al. did not find any indications of this tubular 
structure. As mentioned above, for the time being electron 
microscopical analysis does not give any pertinent information 
concerning changes in structure accompanying the deformation 
occurring with stretch and during contraction. On the other hand, 
the results from the analysis with the electron microscope make 
it necessary to revise the interpretation of measurements of bire
fringence in the muscle fibre.

Ry immersing the fibre in substances with different refractive 
indices it has been established that birefringence in the muscle 
fibre is the result of a form (rod) component and a crystalline 
component (Stübel 1923, Noll and Weber 1934, Weber 
1934 a, b). This differentiation is only possible on fixed fibres. In 
the living muscle fibre of the frog the resulting birefringence 
amounts to 2.0 X 10—3 ± 0.05 X 10—3 (Buchthal and Knappeis 
1938, Knappeis 1948) and varies 1 per cent per 10 per cent of 
stretch. In fixed mammalian fibres Fischer (1947) found a 2—3 
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times larger effect of stretch on birefringence. Provided that the 
results from fixed fibres can fie applied to the living fibre, the 
crystalline birefringence increases about as much with stretch as 
the form birefringence. However, it is essential to point out that 
the increase in birefringence with stretch under all circumstances 
is small in muscle as compared with caoutchouc and actomyosin 
threads.

The approximately parallel longitudinal orientation of protein 
filaments revealed by the electron microscope would be suf
ficient as such to account for the degree of birefringence found 
in the muscle fibre. However, considering that there are no signs 
of differences in orientation in the protein filaments corresponding 
to the anisotropic and isotropic segments, and in view of the fact 
that the filaments pass uninterrupted through one or more com
partments, the origin of the resulting birefringence must be re
considered. It may be looked for either in a substance with 
negative birefringence in the I segment which compensates for the 
positive birefringence of the fibril itself, or in positive biréfringent 
substances surrounding the fibrils in the anisotropic segments. 
The former assumption is supported by the histo-chemical 
finding of lipoid material in the I layer (Dempsey et al. 1946) 
and by the extraction of a material with negative birefringence 
from muscle (Matoltsi and Gerendas 1947). However, the 
question seems far from settled and, as pointed out by Draper 
and Hodge (1949), one might just as well assume the filaments 
throughout their whole length to be covered with a substance 
the negative birefringence of which could compensate their 
positive birefringence. Thereby, the I substance would appear 
isotropic and the substance surrounding the fibrils in the A 
segments might account alone for the resulting positive bire
fringence.

The amount of material present in the muscle fibre apart 
from the filaments is assumed to be localized essentially in the 
A segment, the space in the isotropic part being very restricted. 
Assuming this to be a well established fact it is of interest to 
note the work of Casparsson and Tiiorell (1942), whose find
ings indicate that nucleotide is localized in the I segments. 
During contraction or contracture the anisotropic substance is 
assumed to migrate towards the I segment. However, these 
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assumptions do not give a quantitative explanation of the syste
matic changes found in the distribution of the length of the A 
and I substance during isometric and isotonic contraction and 
during stretch (Buchthal et al. 1936, Buchthal and Knappeis 
1943).

In isotonic contraction of whole muscle birefringence de
creases (Fischer 1936, 1944, 1947). In isometric contraction the 
results obtained are somewhat conflicting. Von Muralt (1932, 
1934) has found a slight negative fluctuation with two peaks, while 
Bozler and Cottrell (1937) found a decrease, an increase, 
or no change at all depending on the initial tension. Obviously, the 
complicated mechanical changes accompanying isometric con
traction in whole muscle make the interpretation of these findings 
rather difficult. In the isolated fibre a tetanic isometric contraction 
is followed by a decrease in birefringence (10—20 per cent, Bucii- 
THAL and Knappeis 1938). The decrease is not present if a con
traction is released in a fibre poisoned with monoiodoacetic acid. 
It is found also in contractions released by minute amounts of 
adenosine triphosphate, but is absent when contraction is released 
by inorganic triphosphate (Buchthal et al. 1944b). For technical 
reasons no information is available as yet concerning the changes 
during isometric or isotonic contraction of the isolated fibre.

The evidence hitherto available indicates that the deformations 
caused by stretch or contraction must occur at the molecular 
level of the structure.

X-ray diffraction analysis which has contributed important 
results to the understanding of protein structure has been applied 
to myosin, muscle, and similar fibrous structures (Böhm 1931, 
Astbury 1931, 1936, Böhm and Weber 1933). It has revealed that 
there is a fibre diagram both in the living and in the fixed and dried 
muscle. These fibres contain a more or less irregular mass of protein 
chains which are so perfectly arranged in the crystalline protein 
molecule, and fibrous substances may be compared with a kind 
of “oakum of protein strands” (Bragg 1948). Owing to the 
rather imperfect arrangements of molecular fragments they give 
more diffuse X-ray diffraction effects and must be considered 
“unsatisfactory witnesses” (Bragg 1948). In analogy to findings 
on other fibrous proteins, especially keratin and myosin, Astbury 
(review 1947) has suggested a way in which polypeptide chains 
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could be folded, and assumed the presence of chains also in 
muscle which occur in a short (a) and a long (ß) modification. 
However, this is an analogy and the transformation from an a 
to a /hform by stretch has not hitherto been found in living 
muscle. Only in dried muscles which were reimmersed and 
stretched, spacings corresponding to a longer modification have 
been demonstrated.

The reproducible spacing corresponding to the intramole
cular foldings is 5.1 Å, while a spacing of 10—11 Å is con
sidered to indicate a periodicity in the transverse direction, 
i. e. corresponding to the mean distance between the mole
cules. Recent investigations have shown that the 1.5 Å reflexion 
from planes perpendicular to the fibre axis which charac
terizes a number of polypeptide chains (Perutz 1951) also 
occurred in dried muscle (Huxley and Perutz 1951). ft was 
present in the relaxed, stretched, and contracted state. These sub
divisions are considered to indicate a spacing corresponding to 
the repeat of the amino acid residues along the polypeptide 
chains and correspond to the helix with 3.7 residues per turn 
suggested by Pauling et al. (1951).

In an important series of papers which has appeared very 
recently Pauling and Corey (1951) have treated the fundamental 
structure of proteins. They suggest two main configurations of 
polypeptide chains, viz. the a helix with 3.7 residues per turn 
and the pleated sheet consisting of a layer of chains with the 
same orientation. According to their assumptions the a helix is 
present in a keratin and a myosin, while the pleated sheet occurs 
in ß keratin and ß myosin.

Pauling and Corey (1951 a) characterize contraction of muscle 
by the transition from a pleated sheet configuration to layers of 
packed cylindrical helices subsequent to the disrupture of a number 
of the hydrogen bonds. Provided that the mechanical forces between 
larger units are of a similar nature as those acting between the 
individual chains, an assumption which seems reasonable, the 
conception of structural changes given by Pauling and Corey 
can account a. o. for the decrease in transverse forces that occurs 
in a tetanic contraction as indicated by the changes in the tor
sional modulus mentioned above (p. 205).

The estimations of mechanical tension and heat produc- 
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lion made on the basis of the structural data arc difficult 
to evaluate. However, there seems to be a discrepancy between 
the calculated values for heat and for force developed by the 
muscle. Thus, a calculated tension of 1.53 kg per cm2 per g. 
muscle and a calculated shortening of 54 per cent result in a 
work of 0.018 cal per g. muscle and not in a work of 0.18 cal 
per g. muscle, the figure given by Pauling and Cokey. The reason 
for this discrepancy is not obvious from the assumptions made 
and the calculations given by the authors. However, a value of 
0.018 cal per g. muscle would be in good agreement with the 
experimental values for the maximum work which can be obtained 
in a tetanic contraction of a muscle fibre (0.036 cal perg. muscle).

X-ray diffraction of living muscle showed clear signs of an in
complete longitudinal molecular orientation within the filament. 
Stretch caused an improvement of this orientation. In the evaluation 
of results from X-ray diffraction it must be recognized that essential 
deformations of the structure may be applied without evoking 
corresponding changes in the pattern. Thus, the diffraction pattern 
of stretched hair which was allowed to shorten 20 per cent, re
mained unaltered with respect to spacing and signs of different 
orientation. The pattern in an isotonically contracted smooth 
muscle (mytilus, shortening 50 percent) showed no deviation from 
the resting muscle, while iodoacetic acid contracture in frog’s Sar
torius was accompanied by an increase in orientation and in 
scattering near the centre of the diagram. That the increase in 
orientation is moderate cannot be surprising in view of the re
latively high degree of orientation present already in the resting 
muscle. The increase in scattering around the primary spot of 
the diagram is interpreted as being caused by the formation of 
amorphous irregular aggregates, which bring about certain 
distortions of the filaments. An isotonic iodoacetic acid con
tracture is associated with scattering to larger angles. Investi
gations of the normal type of contraction in living fibres with 
a proper technique are still scarce.

Optical methods, other than measurements of birefringence, 
have been applied to the living muscle fibre and have given infor
mation about structural properties and their changes by deforma
tions. Light-transparency is only to a minor degree caused by 
true absorption. The fibre acts as a scattering body and ab- 
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sorption is 20—40 times less than the decrease in the light intensity 
of the primary ray caused by the muscle fibre. The specific 
absorption remained unaltered by stretch and increased by 0.8 per 
cent in the isometric twitch. The transparency decreases both 
during stretch and isometric contraction corresponding to an 
increase in scattering. The close packing of minute structural 
elements during contraction is assumed to cause light-inter
ference of neighbouring rod-shaped particles {increased aggrega
tion). These results were interpreted as an improvement in minute 
structural orientation which accompanies both stretch and con
traction (Buciithal et al. 1939). A transient increase in trans
parency has been found at an early time after stimulation, 
simultaneously with the latency relaxation (D. K. Hill 1949). 
This increase is an indication of a decrease in true absorption and 
does not occur at quick stretch of other highly elastic substances.

The cross striations of the fibre give rise to a diffraction 
pattern (Ranvier 1874, Sandow 1936, Buciithal and Knappeis 
1940). Even with a beam which is circular in cross section, the 
spectra do not form sharply limited round spots as is the case 
in a Rowland grating. The images of 0. to IV. order have no 
sharp limit and they are elongated in the vertical direction. 
These “tails” indicate the presence of diffraction phenomena in 
the longitudinal structures of the fibre. The intensity maxima 
which have been observed in the tails indicate a periodicity in 
these longitudinal structures. The histological correlate is the 
grouping of fibrils in columns of 5—7 p in diameter (fig. 1). The tail 
which has a fan-like spreading in the resting fibre, is closed to 
a pointed narrow stripe both by stretch and by contraction. This 
also indicates an improvement of the parallel orientation by 
stretch and contraction (Buciithal and Knappeis 1940).

Although many important details of minute structure in the 
muscle fibre still remain unrevealed, there are a number of common 
trends which have come out from electron microscopical, X-ray, 
and optical analysis. The muscle fibre has a relatively good, but 
by no means complete longitudinal orientation. This orientation is 
improved by stretch and by contraction. The mechanical deforma
tions must mainly be looked for on the molecular level. Both X-ray 
diffraction and transparency measurements give indications of an 
increased aggregation of the minute structure in contraction.

Dan. Biol. Medd. 21, no.7. 15
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2. Minute structural interpretation of 
mechanical properties.

In the present investigation of the structural elements of 
striated muscle accessible in a living state we have mainly dealt 
with the isolated fibre, whose mechanical reactions are con
sidered to be the nearest expression of the minute structure. 
The parallelized organization existing for the fibres of a muscle 
is repeated in its fibrils and protein filaments. Therefore, after 
a certain degree of adjustment has been obtained, equivalence 
can be assumed in the mechanical reactions of the fibre and its 
filaments. The minute structural investigations referred to in the 
preceding section have revealed that on the molecular level of 
the fibre structure we might also reckon with an orientation, 
though incomplete, nevertheless predominantly along the longi
tudinal axis of the fibre. The deformation obtained by stretch 
or contraction must be attributed to changes in the structural 
proteins, which consist of long molecular chains with a high 
molecular weight (1—17 xl()6, Weber 1934b, Bergold 1946).

As is the case with other high polymers it is improbable that 
these long chains exist as fixed units. The incomplete orientation 
will facilitate the interaction between adjacent units, and thermal 
agitation will cause local deformations which are distributed 
at random in time and space. In order to explain the large elastic 
extensibility (change in length 1:4) it is necessary to look for a 
minute structural mechanism dealing with forces which act over 
a large distance, i. e. long range forces as in high polymeric 
substances.

When the properties of the fibre are looked upon in a 
general way their complex mechanical reactions found under 
various conditions display both phenomena which occur quickly 
and reactions whose adjustment takes a considerable time. The 
adjustment can be described by a distribution of retardation 
times and/or relaxation times in a mechanical equivalent system.

The kinetic theory of rubber-like substances.

At an early state of the development of high polymer physics 
mechanical properties of highly elastic substances, especially 
rubber, have been explained by assuming the presence of loosely 
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curled chain molecules (Ostwald 1926). A few years later Busse 
(1932) clearly defined the properties which characterize the 
minute structure of a highly elastic material. Rubber is assumed 
to be built up from chain molecules of long length. Their primary 
valency linkages are considered to be strong enough to resist the 
tension when deformed. Between the adjacent molecules se
condary linkages are assumed to exist which are broken and 
reformed by thermal agitation and thus allow movement of the 
chains in relation to each other. Moreover, a minor number of 
main-valency transversal linkages are supposed to be present in 
the reversibly elastic structure. This interlocking forms a more or 
less permanent pattern of a three-dimensional network. According 
to the kinetic theory (Meyer et al. 1932, Wall 1942, Treloar 
1943, 1949, 1951), the individual links of the chains have a 
relative freedom of motion. Therefore, the chain molecules can 
assume a large variety of different configurations, each having in 
principle the same probability at zero load. The mechanical 
forces arise from the thermal ipovements, which cause different 
stales of contraction by curling of the molecular chain as a 
whole. The length of the chain or its degree of orientation is 
determined by the ratio between the disorganizing thermal forces 
and the external aligning forces acting on the chain. If the chains 
with respect to their terminals have a certain degree of orientation, 
an internal curling up will result in an external shortening of the 
substance in the direction of its orientation and it will display 
elastic properties. Thus, according to the kinetic theory, shortening 
(e. g. as it occurs in rubber with an increase in temperature) is 
considered to be caused by a change in the thermo-kinetic con
ditions. It is an essential consequence of the kinetic theory that 
the elastic tension in a highly elastic substance which is stretched 
to a given length increases proportionally to the absolute 
temperature.

With the development of the theory for the mechanical 
(thermoelastic) properties of highly elastic materials cor
responding kinetic considerations were applied to biological sub
stances (Meyer and Ferri 1936, Wöhlisch 1939).

The anomalous behaviour of clastic tension with temperature, 
which in muscle as in rubber at constant length shows increasing 
tension with rising temperature, the finding of delayed elasticity 

15*  
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and the demonstration of phenomena such as yielding, elastic lock
ing, and thixotropy indicate that also in muscle there is an organiza
tion of minute structural elements in a network, a texture which 
is similar to that assumed for other high polymers. This assump
tion is supported by the demonstration of variable cross-linkages 
in measurements of torsional elasticity and its variation during 
stretch and contraction (Sten-Knudsen 1950). However, although 
disrupture and reformation of points of entanglement between 
minute structural elements of the texture can explain part of the 
mechanical reactions of the muscle fibre, by no means can it 
account for all their peculiarities. Changes in the textural pattern 
implying the occurrence of slack chains, can explain the dif
ferences between isotonic and isometric contraction (locking), 
the amplitude dependence of dynamic elasticity, the maximum 
in stiffness which occurs in an early phase of contraction, and 
finally the finding of thixotropy in the mechanical reaction of 
the fibre.

The kinetic theory can account satisfactorily for the static 
properties of rubber. However, the S-shaped length-tension 
diagram which can be expected in a substance with kinetic 
elasticity and which in fact is found, does not apply to the resting 
muscle fibre. The deviation occurs especially at small degrees of 
stretch where an increase in length in the muscle fibre is asso
ciated with a low gradient of tension, while the gradient is high 
in the curve which is determined by kinetic elasticity. In the latter 
the initial stillness, i. e. the stress gradient, exceeds that present at 
a moderate load. Although in the case of e. g. rubber this deviation 
could be explained on the basis of the work performed in order 
to attain the degree of preorientation which in muscle already 
exists at zero load, there are, apart from orientation, other quan
titative differences in the mechanical reaction between muscle 
and rubber:

The proportionality between static tension and absolute tem
perature (T) characterizing orientated rubber, which as mentioned 
is a direct consequence of the kinetic theory, does not apply to 
the muscle fibre. The temperature coefficient of the isolated 
muscle fibre amounts at most to only one third of a kine
tically caused temperature dependence (Buchthal et al. 1944a). 
This is in conflict with Meyer and Picken’s results (1937) from 
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experiments on whole muscle. The higher temperature coefficient 
of the “static” tension which even exceeds that corresponding to 
a proportionality with absolute temperature might be explained 
by the greater difficulty in attaining equilibrium of temperature 
and mechanical adjustment of the structure in a whole muscle.

Eyring and Tobolsky's theory.

The kinetic theory in its simplest formulation, however, met 
rather early with difficulties. Although this theory can account for 
the static properties of rubber, it is unable to explain the viscous 
effects, such as the slow changes in length observed at constant 
load, delayed elasticity, and the decrease in tension at constant 
stretch. For an explanation of these phenomena, Tobolsky and 
Eyring (1943) and Tobolsky et al. (1943) suggested that the chain 
molecules of rubber have cross-linkages with a relatively low energy 
content. These cross-linkages are broken and reformed by thermal 
agitation. Thereby How properties of the substance will emerge, 
adjacent molecules continuously changing position in relation to 
each other. A flow unit moves from one position of equilibrium to 
another by overcoming a potential barrier, the energy necessary 
being derived from thermal agitation. The shape and position of 
the potential barrier changes slightly with the external load. Certain 
points of entanglement will resist and not be disrupted, then only 
displaying crystalline elasticity, while others will give and yield 
in steps. This results in a visco-elastic reaction of the material.

On the basis of these reaction-kinetic considerations Eyring 
et al.1 have introduced the 3-elemenl model consisting of an 
elasticity shunted by a generalized Maxwell-element to describe 
the mechanical behaviour of rubber and certain textile fibres. 
Also in cellulose fibres the stress-relaxation can be adequately 
described by this theory (Andersen 1951). The elasticity of the 
Maxwell-element has linear properties while the viscosity is non
linear and its resistance determined by the following equation: 

1 Halsey, White, and Eyring 1945, Halsey and Eyring 1945, Eyring and 
Halsey 1946, Stein, Halsey, and Eyring 1946, Halsey and Eyring 1946 a, 
Holland, Halsey, and Eyring 1946, Reichardt and Eyring 1946.

sinh (63)
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dy where er denotes the resistance, ~ the velocity of How, rj cor

responds to the viscosity, and r is a constant. However, the 
mechanical reaction of wool fibres could not be satisfactorily 
described on the basis of Eyring’s simple 3-element model (Halsey 
and Eyring 1946 b), and it was necessary to introduce non-linear 
elasticities in this model, so that its correlation to the basic minute 
structural reaction becomes extremely complex. Also in the case 
of muscle this type of theory seems hardly adequate to describe 
the mechanical reactions.

As regards dynamic mechanical properties of muscle they 
display essential differences from rubber as well. For example 
the difference between static and dynamic elasticity in the muscle 
fibre exceeds considerably that found in rubber. In the former 
the dynamic stiffness exceeds the static by 300—500 per cent. In 
normally and under-vulcanized rubber which we have examined 
under the same conditions as the muscle fibres, the dynamic 
elasticity exceeds the static on an average by 50 per cent and 
at most by 100 per cent. Therefore, the mechanical reactions 
of the muscle fibre are dominated to a higher degree by re
tardation phenomena than is the case in rubber. The large diffe
rence between static and dynamic elasticity found in the muscle 
fibre indicates that time enters as an essential factor in the length
tension relation. The delay in time corresponds to the presence 
of a viscous component, though it does not behave as a classic 
Newtonian viscosity.

In search of a cause of the non-Newtonian delay one might think 
of changes in the degree of hydration of the elastic minute structural 
elements. The liquid which surrounds and imbibes these elements might 
alter their mechanical dimensions owing to differences in the pressure 
gradient which might arise from mechanical deformations. Although an 
assumption of this type might seem near at hand when discussing a 
cellular structure, it seems less probable in the case of the muscle fibre. 
The dimensions of the elastic filaments are so small that the time 
necessary for diffusion would be extremely short. Thus, possible fluid 
displacements will hardly influence to a measurable degree the variations 
of tension with time which extend over seconds to minutes.

The slow adjustment to a new stationary state after a change 
in length indicates that the structural changes do not occur in
stantaneously but with a certain limited velocity. As mentioned 
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above, this flow is considered to be due to a discontinuous inter
action between the molecular chains thereby accounting for the 
variations of viscosity under different conditions. A Newtonian 
viscosity is independent of the load and its resistance varies 
proportionally to the velocity of deformation. In a muscle 
fibre the viscous resistance increased with increasing load and/or 
degree of orientation. To an essentially lesser degree the same 
was the case both in vulcanized and under-vulcanized rubber. The 
viscous reaction of the muscle fibre is attributed chiefly to pro
perties of the texture in which the minute structural elements 
are organized, i. e. it is interpreted as a structural viscosity 
caused by a delayed adjustment to altered mechanical con
ditions. Its increase with increasing degree of stretch is inter
preted in the following way: The orientation of the texture in
creases with increasing load. With a small degree of orientation 
disrupture of a point of entanglement will cause a high in
crease in length while at high degrees of stretch the resulting 
increase in length will be only slight. Therefore, more and more 
points of entanglement will have to be broken to produce a given 
deformation with increasing load, corresponding to an increase 
in viscosity. This effect will be further enhanced if the number 
of points of entanglement increases with increasing elongation.

Granted that curled elements may qualitatively account for the 
length-tension relation, nevertheless the stiffness-tension relation, 
the variation of the viscous resistance, and the orientation present 
in the muscle fibre already at equilibrium length imply that the 
theories developed for other highly elastic substances cannot be 
accepted as a basis of lhe description of the mechanical reaction 
of the muscle fibre. The simple kinetic theory as well as Eybing 
and Tobolsky’s transition theory refer deformations almost ex
clusively to the textural pattern of the substance. In view of the 
fact that the orientation in the muscle fibre is altered only in
significantly by stretch it seems reasonable that the changes in 
length accompanying stretch and contraction are attributed to 
alterations in the length of the chain molecules and not to the 
degree of orientation. Therefore, transitions between different modi
fications will have to occur within the polymerized molecule it
self. In previous investigations the dependence of dynamic stiff
ness on frequency, temperature, and load in experiments per
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formed at constant mean length of the muscle fibre led to the 
assumption that the tension causes altered chemical states of link
age within the minute structural element (Buchthal et al. 1944a). 
The present experimental material has supported this assump-

0 0.05 0/0 0./5 0.20 0.25 5eC.
Fig. 91. Schematic representation of the transmutation theory.

a. Transmutation chain at a low load. The number of a- and /Minks are approx
imately equal.

b. Transmutation chain during the adjustment to a higher load. The number of 
/J-links has increased.

c. and d. Further developing of the adjustment.
d. —h. Contraction of a transmutation chain.
d. The chain just after stimulation. The fixating agent has appeared and has 

fixated a-links.
e. The fixation brings about an increased number of ß —> a transmutations, i. e. 

shortening. Fixation proceeds.
/.—h. Further development of shortening and fixation.

abscissa: time in sec.
ordinate: length in per cent of Lo.

Inset on the right: potential barrier with two equilibrium positions a and ß. 
ordinate: potential energy U. 
abscissa: length L.

tion and enabled us to extend the conception of chains with 
transmuting links as a basic element of the structure for an ex
planation of both visco-elastic properties and contractility. Recently 
reversible changes in the chemical composition induced by 
alterations of the load have been demonstrated chemically. Thus, 
Mochulsky and Tobolsky (1948) have produced evidence that 
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the “cold flow” of polysulfide rubbers is chemical rather than 
physical in nature. The chemical reaction is considered an 
intermolecular exchange reaction between a terminal mercaptan 
group of one chain and a disulfide linkage of an adjacent chain.

It seems to us therefore well motivated to study the quantitative 
properties of a molecular chain within which a transmutation 
occurs between states of different length, in such a way that the 
resulting length of the chain is determined by the ratio between the 
probabilities of the occurrence of short and long modifications. 
By this analysis an attempt is made to investigate to what extent 
a relatively simple model conception can account for complex me
chanical reactions which cannot be attributed to the phenomena 
of adjustment in the texture. Moreover, it turns out that a possi
bility arises to consider in a new light the minute structural changes 
concomitant with contraction thereby accounting for the degree 
of shortening, the shortening velocity, and the relaxation. H. H. 
Weber (1934 a) described delayed elasticity in myosin threads 
qualitatively by assuming a transformation between linkages 
of different lengths within the molecule. In analogy to results 
obtained from the X-ray diffraction analysis of keratin and 
myosin Astbury (1936, 1947) suggested also in the case of 
muscle the existence of two different linkages, a long one and 
a short one, the former arising at a high degree of stretch (cf. 
p. 223). On the basis of Astbury and Bell’s (1941) findings in 
keratin Speakman and Peters (1948) calculated the static length
tension diagram of wool fibres. Similar considerations provided 
the starting point for the quantitative treatment given in the 
following, although no other structural assumptions are implied 
than two different modifications within the protein molecule1.

The single transmutation chain.
The contractile molecular chains are assumed to consist of 

a large number of links occurring in two stable modifications,
1 Burte and Halsey (1947) have derived both static and dynamic pro

perties for this two-position model. They find the model well suited for deal
ing with substances of the nylon-rubber-wool type. Their paper contains some 
of the results which we have obtained independently. In this connection we 
should like to emphasize the importance which we ascribe to cross-linkages 
between the minute structural elements e. g. for the understanding of thixo
tropy. Burte and Halsey explain thixotropy by means of a three-position model. 
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a short one (a) and a long one (ß). The difference in length is 
supposed to arise either from the size of the angle formed by 
adjacent parts of the molecule or from the change in orientation 
of cyclic rings building up the links (Bailey). The rings can 
alternate in their orientation either longitudinally (ß) in the direc
tion of the axis of the chain molecule or transversely to it (a) 
(fig. 1, cyclic units). Transmutation from the one linkage to the 
other can be described by the transition over a potential barrier 
in passing from one potential minimum to another.

The single links of a molecular chain are exposed to thermal 
bombardments displaying a frequency of approximately 1()13 
per sec. This figure is based on the assumption that the majority 
of thermal encounterings is caused by water molecules which 
form the main component of the muscle tissue. As shown by 
Hill and Kupalov (1930), water occurs only to a minor degree 
in a bound state. The frequency of thermal collisions (v) is deter
mined from the following formula:

c
1000 N-2jcr-l (64)

where c denotes the concentration of bombarding molecules, 
N = 6-IO23 Avagadro’s number, r and I the radius and length 

of the transmuting element in the chain molecule, 

the mean velocity of water molecules at temperature 7’, and 
niIIt0 the mass of the water molecule. The length and the radius 
of the elements are assumed to be 20 and 3 Å respectively.

A small part of the collisions are assumed to have suffi
cient energy (> the activation energy for the transmutation) to 
release a transmution from one modification to another (a -> ß 
or ß —> a). The fact that not all thermal encounterings cause a 
transmutation is due partly to the distribution with regard to the 
direction of bombardment, partly to the energy distribution 
of the colliding particles, i. e. the Maxwell distribution corre
sponding Io the temperature in question. The larger the energy 
necessary for transmutation, the less probable it will be. The pro
bability that a thermal collision has an energy exceeding the 
temperature energy, kT, according to the Maxwell distribution is 



Nr. 7 235

57 per cent. The probability of an energy > 4 kT is 4.6 per cent 
and the probability of an energy > 9 kT is 0.044 per cent. The 
activation energy in the usual chemical reactions is of the order 
of magnitude of one electronvolt. The temperature dependence of 
the mechanical reaction of the muscle libre found from the dis
placement of the boundaries of the spectrum of retardation times 
(fig. 26) gives an equivalent activation energy of 0.6 eV. In this 
estimation we have considered mainly the shortest retardation 
times which can be expected to be an expression of processes 
within the molecular chains. The probability that the energy of 
the colliding particle will exceed 0.6 eV (> 25 kT) at 0° C. is 
8 X 1()~11.

The transmutations will cause a continuous alternation be
tween the two modifications of the links in the molecule. How
ever, apart from the energy of activation derived from thermal 
movements, an additional prerequisite for a transmutation to 
occur is that there are suitable possibilities for it in space.

According to Eyring’s viscosity theory (cf. Eyring and Powell 
1944) the probability of transmutation is relatively small when 
the molecular packing is tight. Thereby the transmutation fre
quencies for both a —> ß and ß -*  a is reduced and there will be 
a spectrum of activation energies instead of a single one.

The energy necessary to cause transmutation apart from 
thermal agitation is derived from the external load which acts 
on the molecular chain. In order to keep equilibrium between 
the stress in the transmuting element and the external load, the 
length of the individual a and ß linkages changes slightly with load.

Let us consider the potential barrier for the unloaded trans
muting link as being only one-dimensional and determine the 
influence of the load on the activation energies of the system. 
The potential energy (U) is given by

U=U(L), (65)

where L denotes the length of the link. As postulated above, U 
has two minima corresponding to the a and ß modification and 
a maximum corresponding to the peak of the barrier. The barrier 
is not necessarily symmetrical. The activation energy for trans
mutation a -> ß is

= U (LJ — U (La) (6b)
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and for transmutation ß a

Aß+a = U (LJ — U (Eß'), (67)

where denotes the length corresponding to the peak of the 
potential barrier.

A load P is considered to cause a modification of the poten
tial to

Up (L) = U (L) — P X L. (68)

The maximum and minimum for this potential
mined by

are deter-

(69)

Therefore, at load P the length of the a and ß modifications 
La(P) and Lß(P) are determined by

^ = P for i = i„(P) and L = Lß(P). (70) 
dL

Also the maximum is displaced to a position Lx (P) deter
mined by

d,U = P for L = L,(P).
dL

If the load P exceeds the maximum gradient of U (L) in the 
interval (La<L<L1) only one modification can exist, viz. the 
long one.

According to the potential barrier indicated in fig. 91 (inset) 
we have

La<La(P)<L1(P)<L1 and Lß(P)>Lß. (71) 

Therefore, the activation energies in the loaded state are: 

da^œ) = U(Ll(P))-u(La(j>»-Px(Ll(P)-La(P')) (72) 

and

Aß+a(P) = t7(L1(P))-U(^(P)) + Px(Lß(P)-L1(P)). (73)
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By its displacements of the equilibrium positions in both cases 
the load P causes a decrease in the thermal energy necessary 
to cause a transmutation (activation energy). In addition, for 
the transmutation a —> we have a decrease in activation 
energy corresponding to the work performed by the tension in 
surmounting the potential barrier. Conversely for the trans
mutation > a we have an increase in activation energy cor
responding to the work to be performed against the load in 
surmounting the potential barrier.

The frequency of transmutation, Wa+ß (P) and Wß+a (P), 
i. e. the probability per time unit of the transition from one 
modification to another is assumed to depend on the activation 
energy (A) in the same way as the reaction velocity of a mono- 
molecular chemical reaction depends on the activation energy, 

_ A
i. e. through the van t’Hoff factor e kT (Gibbs, Arrhenius). 
Here 7’ represents the absolute temperature and k Boltzmann’s 
constant. Hence, the frequencies with which the transmutation 
occurs, are:

A«+ß^ 
Wa^ß(P) = va+ß(r,pye kT

Aß + aSP> 
Wß^a(P) = Vß^a(T,P)e~ kT .

(74)

The factor v (T, P) depends on the frequency of collisions, their 
spatial distribution, and the spatial possibilities for a transmutation 
to occur. It follows from the general formula for the dependence 
of activation energy on the load applied (72, 73) that a load 
P increases the transmutation frequency a -> ß partly because the 
load by its work facilitates the transmutation, partly because the 
displacement of the equilibrium positions by the load causes a 
decrease in activation energy. Conversely for the transmutation 
ß -> a the load causes partly a decrease in the frequency of 
transmutation on account of the extra work necessary when a 
transmutation occurs against the load, partly an increase which 
again is due to the displacement of the equilibrium positions. 
In advance it is impossible to estimate the relative importance 
of the different factors for the transmutation frequency. There
fore, in order to be able to perform quantitative estimations, 
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certain assumptions are necessary which, however, appear to be 
reasonable approximations. The potential U (L) is assumed to 
have such a shape that the changes in length of the individual 
a and ß link caused by the load and the decrease in activation 
energy, which arises from these changes, are of secondary im
portance.

Hence U (L) must increase steeply from the a minimum to 
the peak of the potential and from the ß minimum outwards so 
that the slope soon equals the load. This will certainly be ful
filled for loads P for which Px(Lß— La) is small as compared 
with the activation energies. As will be shown below (p. 243), this 
inequality actually exists in the case of the transmutation chains 
of the muscle fibre. Here, at 0° C., an activation energy (A) of 
0.6 eV (14 kcal per mole) corresponds to approximately 25 17’, 
i. e. 5—8 times the estimated maximum value of Px(Lß— La).

With this assumption the activation energies (72, 73) will be:

where

and

^a->/î(7J) — Aa+ß— PX.Åa i
(75)

Aß+a(P) = Aß+a + Pxlß J

Âa — .Lj — La

Äß — Lß — Tp
(76)

Moreover, we assume that the proportionality factors vß+a 
and va^ß are identical and we disregard their possible depen
dence on the load.

Hence we get from (74) the following expressions for the fre
quency of transmutations:

Aa->~ß~ p^a 
Wa+ß(P) = v(T)e kT-

(77)
Aß + a + p^ß 

Wß+a(P) = v(T)e kT .

The small temperature dependence of the length of the muscle 
fibre makes it reasonable to assume that the activation energies 
Aa+ß and Aß+a are equal. In the following they are denoted 
by A. Moreover we assume that the potential U(L) is symmetrical, 
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i. e. Aß = Åa = A. In the approximation applied in the following 
calculations a possible asymmetry will be without importance. 
Thus :

A PÅ
Wa+ß(P) = v(T)e~+r e kf

A PÂ

Wß^a (P) = v(T) ¿~ kT

(78)

or by introducing
A

W = V (T) (79)

where p represents a quantity which is proportional to the load:

Wa+ß (P) = Wep
(80)

Wß^a(P) = We~p. J

Based on these assumptions, calculations can be performed 
regarding the mechanical behaviour of a chain with transmuting 
links of the type indicated above. Static and dynamic properties 
will be considered separately and at the end of every section a 
comparison will be given between theoretical results and experi
mental findings.

The static length-tension diagram for a 
transmutation chain.

The basis of the calculations simply is, that if a chain of 
transmuting elements is in equilibrium with a given load, the 
number of a -> ß transmutations per second must be equal to 
the number of ß -> a transmutations per second.

Therefore, denoting the number of a-elements in the chain 
by Na and the number of ^-elements in the chain by Nß we get

introducing
Na ™a+ß(p) = NßWß^a(p);

Na Nß
Na+Nß

(81)

a
Na+Nß

and ß = (82)
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and (80) we get

Furthermore we have

£ = e2p.
a

a + ß = 1.
From (83) and (84) we get

and

ß =
1

p

The length LN (P)1 of the chain is

Ln (P) = La Na + Lß Nß.

(83)

(84)

(85)

(86)

(87)

The length per link L (P), i. e. the mean length of one link in 
time, therefore is:

L(P) = a La+ ßLß. (88)

By means of (83) this is transformed to

and, furthermore, according to (85) we get the following expres
sion for the length per element:

L(P) = La (89)

The ratio — in the following is put equal to 4. This value 
La

is assumed on the basis of the difference between the minimal 
length of a shortened fibre at a low load and the length of the 
resting fibre at high degrees of stretch. Finally, using La as length

i N = Na+ Nß, the number of links in the chain.
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unit the final expression for the length-tension diagram of the 
transmutation chain is:

(90)

This diagram is given in fig. 92b. For small loads the length
tension relation is linear, i. e. in this range the chain behaves 
approximately as a body with Hookean elasticity. With larger 
loads the length approaches asymptotically its limiting value, 
which referred to La as length unit is 4.

The equilibrium length Lo of the chain, i. e. the length at 
load P = 0 is 2.5 according to (90). Hence, with the present 
assumptions the chain can be extended by only 60 per cent.

The length-tension diagram for the transmutation chain is 
similar to the static diagram of the resting muscle fibre (fig. 92a).

Fig. 92 a. Static length-tension diagram at rest and the curve for the isotonic 
maxima for the muscle fibre (0° C.). 

abscissa: length in per cent of Lo. 
ordinate: load in units of Po.

However, in two respects these two diagrams deviate from 
each other:

1) The transmutation chain can only be extended by 60 per cent, 
while the fibre can be stretched by more than 100 percent, and 2) 
the muscle fibre at low loads displays only a small increase in 
tension with increasing length. Therefore, the equilibrium length 
of the transmutation chain is apparently too high. However, as dis
cussed below, the difference can be understood, when a model

Dan. Biol.Nedd. 21, no.7. 16
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is used containing more than one transmutation chain, the dif
ferent chains being connected by cross-linkages and forming a

Fig. 92 b. Static length-tension diagrams at rest (lower curves) and during tetanic 
contraction (upper curves).

0 represents the diagrams for a single transmutation chain.
1, 2 and 10 represent the diagrams for the slack-free system of cross-linked 
transmutation chains. The figures on the curves denote the corresponding values of 

the constant K.
FC During contraction it is assumed that: = 30.

abscissa: length per link in units of La. 
ordinate: tension expressed as log10r2/).

The length of the resting muscle fibre does not go to an 
asymptotic value when the load is large, as does the transmu
tation chain according to the present assumptions. This dif
ference will disappear when the deformation is considered which 
is produced by an elasticity placed in series with the trans
mutation chain.

This element with Hookean elasticity will not be significantly 
deformed until the possibilities for changes in length by the 
a -> ß transmutations are practically exhausted. Il must be sought 



Nr. 7 243

mainly in the deformations of the a- and /Minks themselves 
caused by the load (cf. p. 236).

When a single transmutation chain is used as an essential 
element in the structural interpretation of the static length-

Fig. 92 c. Static length-tension diagram at rest and during tetanic contraction 
for a system consisting of a continuous distribution of transmutation chains with 

different equilibrium lengths plus a Hookean series elasticity.
0 represents the model at rest.

FC15 represents the model in tetanic contraction: = 15.
FC30 represents the model in tetanic contraction: = 30.

The elongation caused by the series elasticity is assumed to be 0.20 log10 c2p- 
abscissa: length per link of the chain with the smallest Lo in units of La. 
ordinate: tension expressed as log10e2p.

tension diagram of the muscle fibre, it is a prerequisite that the 
loads which normally act on the fibre correspond to loads on 
the transmutation chains which can actually produce an essential 
part of the possible deformations. Therefore, according to the 
theoretical length-tension diagram (fig. 92 b) 2p must assume 
values of, e. g., 3.0 which corresponds to an elongation of 54.3 
per cent in proportion to the 60 per cent which is obtainable. 
The following estimation shows that it is actually possible to 
arrive at such values of p. At 0° C. the temperature energy kT 

16*
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is 3.74 X 10—14 erg. Therefore, at 0° C. 2 p = 3 corresponds to an 
external work of 2PÅ — 1.12 X 10-13 erg. Assuming that La = 5Å and 
Lß = 20 Å, i. e. that 2 Å = Lß — La = 15 Å, 2 p = 3 corresponds 
to a value of P of 7.5 X 10“7 dynes. The maximum force (Po) 
which the muscle fibre can develop in an isometric tetanic con
traction is 2.75 X 106 dynes per cm2 (0° C., Table 10). If 2 p = 3 
corresponds to a load of this magnitude, and if the load is distri
buted evenly among a system of chains, the number of chains
per cm2 will be

2.75 X_1 O'5
7.5 X IO“7

= 3.7 X 1012.

Assuming a non-uniform distribution of the tension on account 
of differences in chain lengths and cross-linkages in the structure 
(cf. p. 248) this figure is too small and there should for example 
actually be twice as many chains, i. e. 7.5 x 1012. Supposing an 
even distribution of water within the fibre, this would cor
respond to a mean distance between the transmutation chains 
of 36 Å. Since, however, an essential part of the water must be 
localized outside the structural elements this figure is reduced 
correspondingly, e.g. by a factor 1.5—2.5, and we arrive at values 
which appear reasonable in comparison with distances found 
from X-ray analysis of proteins of the k-f-ni group (Astbury 
1947).

Theory for isotonic transients applied to a 
transmutation chain.

The length-tension diagram derived for the single trans
mutation chain represented a static problem. The assumptions 
made enable us to deal with non-static problems as well. The 
basis of this treatment is the fact that the velocity of elongation 
is always proportional to the difference between the number of 
a ß and ß a transmutations per second. Each increase in 
length must arise from a relative increase in transmutations 
a -> ß as compared with ß -> a.

Let us consider a chain without equilibrium in the a ß 
transmutations. The chain is assumed to consist of a large number 
of elements N, Na of which are in the a and Nßoi which are in the 
ß modification. When the chain is loaded by the load 1\, the
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number of transmutations a ß per second according to (80) 
will be

Na • WeP1

and the number of transmutations ß —> a will be

Nß- We~P1.

With the length of an a element as unit each transmutation 
gives a change in length of 4-3 or —3. Hence, the length of the 
chain will vary with the velocity vN given by:

= 3 [NaWe,h — NßWe~P1]. (91)

Mx NßBy introducing a = —  and ß = —-, we get the following ex
TV N

pression for the velocity v per link of the chain:

= 3 VV [aeP1 — ße~P1]. (92)

According to (88) the length of the chain per link is:

L = a + 4ß=l+3ß. (93)

Hence, the velocity per element is:

d«
" = 3¿¡r. (94)

(92), (93), and (94) give the following differential equation re
lating the variation of L and P in time:

(lk = 3 WePl — W (L — 1) (eP1 4- e_P1), 
ar

i. e.
d~ = — W (eP1 4- e~P1) L 4- W [4 ep* 4- e_P1]. (95)
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Hence, if we know the variation of I\ with time, we can 
determine the length L as a function of time from (95).

In applying these results to an isotonic transient, a transmutation 
chain originally in equilibrium with the load P at time zero 
is suddenly subjected to a change in load AP. Thereby the fre
quency of transmutations in the two directions, which originally 
is identical, will suddenly be changed and the transmutation 
frequency a -> ß will be different from that for ß -> a. Thus, 
the chain will acquire a velocity of change in length aiming at 
bringing the chain to the length which corresponds to the static 
load P + AP. The variation of length with time can be determined 
from (95) by putting Px = P + d P and introducing the initial 
condition

L = L (p) at time t = 0.
Thereby we get:

L (0 = L (p + dp) — (L (p + dp) — L (p)) , (96)
where

- = W(ep + ztp e-P-dp), (g;)

and where L (p) and L (p -f- d p) represent the static length cor
responding to load P and P + d P. Thus, the transmutation 
chain goes exponentially from the initial length to the new final 
length, with a decay-time t given by (97). This finding is of 
particular interest in relation to the Voigt-model applied to 
describe the reaction of the muscle fibre to an isotonic transient 
(Part II). It shows that the single transmutation chain reacts 
to an isotonic transient as a Voigt-elcment with the elastic stiffness:

^elast L (p -|- d p) — L(p) (98)

and a retardation time r given by (97). Hence, the distribution 
of retardation times characterizing the Voigt-model for the 
muscle fibre, can be partly understood by using as a model for 
the muscle fibre a system of cross-linked transmutation chains, 
in which there is a non-uniform distribution of tension. How
ever, the prolonged creep in the muscle fibre must be considered, 
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as we have discussed in Part II of this paper, to be due 
chiefly to the disrupture and reformation of points of entangle
ment. The dynamic stiffness of the muscle fibre which is deter
mined by the short retardation times (p. 105) arises therefore 
chiefly from transmutations within the molecule and only to a 
minor degree from transitions in the texture.

The initial velocity v0 in the isotonic transient is obtained 
from (92), when Px is put equal to P + Zl P and a and ß are 
given by (85) and (86).

Hence v0 is

By means of this expression and the experimentally found 
initial velocities in isotonic transients a rough estimation can be 
attempted of the frequency of transmutation IV. With an ini
tial velocity of 10—30 Lo per sec. = 10—30-2.5 La units per 
sec. (see isotonic transients Table 2) and assuming 2 p0 = 3, we 
get with AP = 3 P for small loads values for IV of 20—60 sec-1.

However, evidence has been presented in the preceding parts 
of this paper, that in the transient experiments with large de
formations cross-linkages will play a rôle even within the short 
time interval used for the determination of the initial velocity (5—20 
msec.). Hence, the actual values of IV must exceed considerably 
the estimate given here.

Static length-tension diagram for a system of cross-linked 
transmutation chains.

• As emphasized above, a single transmutation chain does not 
describe satisfactorily the length-tension relationship of the 
resting fibre. The initial slope calculated for the transmutation 
chain deviates from that of the fibre.

A more adequate picture of the minute structure comprises 
a system of transmutation chains which are more or less 
randomly cross-linked and rather well orientated along the fibre 
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axis, but which are not necessarily of the same length (i. e. they 
do not consist of the same number of links). This model is 
analysed for two simplified cases:

1) a system consisting of parallel chains with different equi
librium length (influence of slack).

2) a cross-linked system of chains without slack (influence 
of cross-linkages).

1. The length-tension diagram of a system of parallel chains 
with different numbers of links shows good agreement with the 
length-tension diagram of the resting muscle fibre. Let us con
sider a system of chains with the number of links ranging be
tween Nx and N2 (both » 1) and for the sake of simplicity we 
assume that the different numbers of links are equally probable. 
The chains are supposed to be coupled at the ends. Therefore, 
the equilibrium length of the system, i. e. its length at load 
zero is:

Lo = 2.5 -A\. (101)

The maximum elongation which is possible remains 60 per 
cent. This implies that chains with a number of links N > 1.6 
never will participate in the load. If the system has a length L, 
the chains whose equilibrium length is < L will be loaded, the 
condition being:

L > 2.5 • N
or

(102)N < 0.4 L.

A chain with a number of links which fulfils this condition 
will be under load p (A) determined by 

3

i. e.

(103)

According to the assumption concerning the distribution of 
the number of links in the chains the mean tension p is:
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(104)

where TVmax denotes the lowest value of N2 and 0.4 L. By in
TVtroducing n = and by replacing the summation (104) with

an integration we get from (103)

i

L/Nt — ii
4II—L/N

or

(LIN, -1 ) log (LIN, -1 )—(LIN, -nmux) log (LIN, 

+ ' (4 - LIN,) log (4 - LIN,) - j (4 nronx - LIN,) ■ log (4 nmax -

By assuming a variation in the equilibrium length of the chains 
of e. g. 30 per cent, i. e. with N2 = 1.3 and putting an elasti
city in series with the system, we get the length-tension diagram 
shown in fig. 92 c. With regard to the series elasticity, which 
must be considered to have both a crystalline and a kinetic 
component, we have assumed it to increase in length by 0.2 
La units per unit of load expressed as log10 e2p.

It is seen that the initial course of the length-tension diagram 
which we have obtained, corresponds to that experimentally 
found in the muscle fibre (fig. 92 a).

These calculations show the elîect on the length-tension 
diagram of slack in the fibre structure, since the parallel chains 
of different “length” can be considered to correspond to the 
chains situated between cross-linkages in the structure.

2. Correspondingly we can deal with the isolated effect of 
cross-linkages. For this purpose we disregard slack and possible 
different numbers of links in the chains.

Hence, a system will be considered consisting of parallel cross
linked transmutation chains with the same number of links and 
acted upon by the load p. We assume continuous disrupture and 
reformation of cross-linkages in the structure. The cross-linkage is 
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assumed to consist of a coupling of links of the same type. These 
aggregates can include links from more than two chains, since 
it is assumed that each link is able to form two cross-linkages.

The probability per second of the formation of a cross
linkage is postulated to be proportional to the possibility for the 
presence of cross-linkages in the adjacent chains. The propor
tionality factor is denoted by C\. The probability per second of 
disrupture of a cross-linkage is assumed to be constant inde
pendent of the load and the size of the aggregate. It is denoted by 
C2. The links are grouped according to what type of aggregate 
they belong to, i. e. aggregates with 2, 3, 4, • • • links, respectively.

Let us consider a system of chains in which the total number 
of links is N, Na of which are a-links and Nß of which are /blinks. 
The system is assumed to contain M aggregates, Ma of which 
are a-aggregates and Mß of which are /^-aggregates. a2, a3, a4 
denote the number of aggregates with 2, 3 and 4 links and a4 
the number of free a-links. A corresponding notation is used for 
the /blinks. Then there exist the following relationships between 
the number of aggregates and the number of a- and /blinks:

Ma — a4 + a2 + «3 4“ • • • • (106)

Mß = ßi 4~ /?2 + /?3 + ' ' ' ' (107)
and

A/a = a4 + 2 a2 -f- 3 a3 4~ • • • • (108)

A7/? = ßx + 2 ß2 + 3 ß3 + • • • • (109)
and

M = Ma + Mß (HO)

N = Na + Nß. (Hl)
As previously we use

Na Nß
“ = and P=N- (112)

The length per link in a chain measured in units of La is de-
termined by (93)

L = 1 + 3 ß. (113)

In determining the static length-tension diagram simple equi
librium considerations are again applied. It is assumed that only 
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free elements participate in the transmutations a ß. This 
is justified since the activation energy for a transmutation of 
an aggregate must be considerably larger than for a single 
link.

In the stationary state, where we have constant length, the 
frequency of transmutation a -> ß is equal to that of ß -> a, i.e.

ax Wep = ß1 We~p, (114)
i. e.

Ê1 = e^p

«I
(115)

Moreover, the same number of a-links must enter and leave 
the aggregates per second, i. e.

In this formula, according to the assumptions above, the 
expression to the left gives the number of free a-links formed per 
second and the expression to the right gives the number of free 
a-links, which are taken up in aggregates.

Introducing the constant K: 

(117)

we get from (116) and (106)

2(A/O —at) = K^-Ma,

i. e.

(118)

The number of a-aggregates containing n elements is constant as 
well; expressed mathematically this gives:
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n
„2
Vr an~r 
> C‘“-' N

1
1 + Ôr,n-r 2 C2(a/l + i+an + 2+ • •

r = 1

C2’ (« — !)«„ + ct«n
at + a2+ • • • •

N
where

<5 = «r, n—r

0 for 4- n

1 for n
1 = 2’

and where indicates a summation to •2 —
(119) is transformed to

(119)

(120)

1
' ~an>at — a2 —

Hence,

1

(121)

2 (Ma

«+1 + Æ-
N

1 + <5r,n-r

= (n-l)an+Æan~.

2 (AIa — at — ct2----- an_t) + A’

1 + Ôr,n-r

an-r 
ar~Ñ~

n”
2 

Ct .n — r 
a'~ÄF

r = 1

r =1

Corresponding expressions can be derived for the /Minks and 
for the sake of simplicity let us apply the same value for the 
constant K.

Expressions (118) and (121) and the corresponding expres
sions for the /Minks make it possible to compute the aggregate 

distribution as a function of — u and — . This is shown in fig. 93 a, 
N N

b, c for ax, a2, - • • • with the values 1, 2, and 10 for K.
In order to derive a length-tension diagram, in the first place 

we need to determine a and ß or Na and Nß as a function 

°f ar,d ■ This is done by means of expressions (108), (109),
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and (112). Fig. 93 also contains the course of a as a function of

—. Finally the tension p corresponding to a given length L is 
N
determined in the following way: According to (93) definite 
values of a and ß correspond to the length L. Then, for these 
values of a and ß we can determine the corresponding values

Fig. 94. Static length-tension diagram at rest and during tetanic contraction for 
the slack-free system of cross-linked transmutation chains in series with a Hookean 

elasticity.
The latter is assumed to cause an elongation: 0.20 log10 e2,\

The figures on the curves denote the corresponding values of K.
During contraction it is assumed that — = 30. 

abscissa: length per link in units of La. 
ordinate: tension expressed as log10e2p.

for and from the distribution curve for the aggregates.

Finally, the tension can be found from (115).
Fig. 92 b contains the length-tension diagrams arrived at in 

this way for different values of K. For comparison the diagram 
for a single chain is given in the same figure. It is seen that cross
linkages reduce the gradient of the initial part of the length
tension diagram and they do it the more, the higher the value 
of K we use. If we add a series elasticity, the diagram given in 
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fig. 94 is obtained. For a value of K = 2 we get a satisfactory 
agreement with the diagram of the muscle fibre.

As was previously emphasized, the two ways in which we have 
derived a length-tension diagram showing good agreement with 
that of muscle represent an artificial separation of two essential 
properties which actually occur side by side. Moreover, the 
occurrence of slack and a partial disalignment of the chains 
caused by cross-linking, will bring about a reduction in the 
equilibrium length as compared with that of the single chains so 
that the maximum elongation will exceed 60 per cent. This will 
further improve the agreement between the length-tension diagram 
of the model and that of the muscle fibre.

The assumption of aggregates implies that a crystalline 
structure can be expected in X-ray diffraction diagrams (Astbury 
1947). Furthermore, in the present model there will always 
occur both a and ß links just as in the single transmutation 
chain. On account of slack and of non-uniformity in the distri
bution of tension even at rather high degrees of stretch, part of 
the minute structural elements will occur in the a modification. 
This may be an explanation of the difficulty of differentiating 
clearly in the X-ray pattern of living muscle between a pure 
a and a pure ß state.

Isotonic transients with aggregates.
As indicated above, the cross-linked transmutation model can 

be expected to permit a belter estimate of the frequency of trans
mutation W from the initial velocity in the isotonic transients 
than does the single chain.

Supposing that the initial velocity i>0 is determined chiefly by 
the transmutations a ß and is influenced to only a minor degree 
by alterations in the textural pattern, we can expect according 
to the model without slack :

p0 = 3 W [e¡) + ^P ai —e-P-^P ßx\, (122)

where cq and ß1 correspond to the tension P. With the values 
for p0 and v0 used in the simple transmutation theory (p. 247) 
and with the values for cq and ß± derived from fig. 93 we find 
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that K — 2 gives an increase in W of 50 per cent as compared 
with the single chain (20—60 sec.-1) while K = 10 gives an in
crease of 400 per cent.

Theory for contraction of the transmutation chain.
As indicated in Parts II and III of this paper the minute 

structure of the contracted fibre is assumed not to differ in 
principle from that of the resting fibre. Therefore, the contracted 
fibre is considered to consist of a system of more or less randomly 
cross-linked, rather well aligned transmutation chains. The 
decrease in length in contraction is taken as an expression of a 
relative increase in the number of links in the a modification. 
The increase is assumed to arise from a reduction in the pro
bability of transmutation from the short to the long modifications, 
i. e. a number of a links are assumed to be excluded from a 
transmutation. This is supposed to be realized by a fixation of 
links in the a-form in such a way that they are prevented from 
participating in the a^ß transmutations (fig. 91). The fixation is 
assumed directly or indirectly to be brought about by the stimulus. 
For the time being the physico-chemical correlate of this fixation 
can only be a matter for speculation. Thus, it remains an open ques
tion whether the fixation consists in the removal or the addition of 
a “chemical unit” from or to the link. Speculations as to the 
nature of this unit whether an atomic particle or a more complex 
molecule, and with respect to its relation to the actin-myosin 
model and to the interaction between adenosine triphosphate and 
acto-myosin, seem to us to be premature.

In the active phase we assume a continuous fixation and 
defixation (i. e. disappearance of fixation) of a links. The fre
quency of fixation is assumed to be proportional to the con
centration C of a fixation agent (factor) and to the number 
of possibilities for fixation, i. e. proportional to the number of 
non-fixated a links. The frequency of defixation on the other 
hand is supposed to be proportional to the number of a links 
in the fixated state.

Let us first apply these considerations to a single trans
mutation chain and investigate how far mechanical properties 
characterizing contraction can be described in terms of this 
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simple conception. Referred to a given load the activated chain 
contains a certain fraction/? of links in the ß state, another fraction 
aj in the transmutable a state and finally a fraction a¡ in the 
fixated a state. Thus we have:

«1 + G-f + ß — 1 • (123)

In an equilibrium state, i. e. when the frequency of trans
mutation a -> ß is equal to the frequency of transmutation 
ß-+■ a, we have in analogy to the resting chain:

i. e.
cq Wep = ßWe~p,

= e2”.
aL

(124)

The static length-tension diagram of the “tetanically 
contracted” transmutation chain.

As mentioned above, the activated state is characterized by the 
concentration C of a fixating element. C is considered constant 
on the tetanic level of a contraction. According to our general 
assumptions the number of fixations and defixations per link of 
the chain per time unit is

FC ay (fixation) and

Da¡ (defixation),

where F and I) are proportionality factors. In the stationary state 
corresponding to static length and tension these two frequencies 
are equal and the condition for equilibrium co cq therefore is:

FC ay = 1) a¡. (125)

For ay, a¡ and ß we have (123), (124), and (125), which give

(126)

Dan. Biol. Medd. 21, no.7. 17
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By introducing this value for ß in the expression (93) for 
the length L per element expressed in units of La we get the 
length-tension diagram in contraction:

^contrOO 1 (127)

It is seen that the parameters F, C, and D only enter as

£. With FC
D

0 the expression (127) corresponds to the length

Putting
tension diagram of the “resting” chain.

i i FC 2Pextrn
1 D (128)

i. e. introducing
2Pextra = log^l + ^T

(129)

(127) assumes the simple form:

■^contr(p) “ 1 1 2(p—Pextra) * (130)

Comparing this expression (130) for the length-tension 
diagram in tetanic contraction with that derived for the resting 
chain (90) we see that at a given length > the equilibrium length 
the static tension in contraction exceeds the static tension of the 
resting chain by the constant amount pextra. Hence, the simple 
transmutation chain is characterized by a constant extra tension 
in an isometric tetanic contraction. Moreover, it is seen from (130) 
that the part of the length-tension diagram which corresponds to 
lengths < 2.5 can be derived as the mirror image through the 
point (2.5, Pextra) that Pai’t which exceeds the length 2.5.

The curves in fig. 95 show the length-tension diagram of the 
contracted transmutation chain given by (130) for different values 

FC FCof — - . When — exceeds 5, the diagram acquires a pronounced 

S-shaped course. There is good agreement with the experimental 
findings on the muscle fibre, both for the curve of the isometric 
and of the isotonic maxima. It should be noted that for the trans
mutation chain the isotonic and the isometric maxima coincide.
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The experimental fact that isotonic and isometric maxima for the 
muscle fibre do not coincide and that the extra tension decreases 
at high degrees of stretch can be understood from the more 
complicated model with cross-linked chains (cp. Part III).

Fig. 95. Static length-tension diagram at rest and during tetanic contraction for 
the transmutation chain.

0. Rest.
5, 13.5, 30 and 50. Tetanic contraction. The figures on the curves denote the cor- 

FCresponding values of
abscissa: length per link in units of La and in per cent of the equilibrium length 

(L0=100).
ordinate: tension (e2p in logarithmic scale).

P'CThe theoretical curves obtained for low values of — should 

correspond to the diagram of the muscle fibre at low degrees 
of contraction.

The dynamic stiffness of the muscle fibre which is considered 
to arise mainly from the transmutations within the contractile 
chains will increase when the transmutation (deformation) of 
certain elements is impeded. Thus, the fixation of links can 
account for part of the increase in stillness which characterizes 
contraction. This contribution is approximately inversely pro
portional to 1 — af. As to the other factors involved in the 
increase in stiffness see changes in texture p. 105.

17*
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Shortening- and relaxation velocity in the single 
transmutation chain.

We shall consider a transmutation chain at rest which is 
in equilibrium with the load p. At time I = 0 we suddenly 
release the fixating factor in a concentration C. Thereby the 
chain will shorten to attain its new equilibrium length determined 
by p and C. In the following the course of this shortening is 
analysed assuming C to be constant with time.

In qualitative terms the mechanism for shortening is the 
following: The fixating agent produces a gradual fixation of free 
a links. Thereby the frequency of transmutation a ß is re
duced and the transmutations a ß residí in a true shortening, 
which continues until the frequency of defixation equals that 
of fixation. Considered quantitatively this process may be dealt 
with in esssentially the same way as the reaction kinetics of a 
chemical process in which a substance cq is in equilibrium 
partly with a substance ß and partly with a substance oq

(131)

The fixating elements can be compared with a catalyser which 
makes possible the formation of a¡. In the following mathe
matical treatment alt a¡, and ß are studied as functions of lime.

With the former assumptions we gel the following equations 
of motion for the course of shortening:

= W[cqep —ße—p]

= W [ße—p — oq ep] + Daf — FC cq

da,
= FC^-Da,

with the initial conditions at time zero:

1
1 + c2"

and a i = 0.

(132)

(133)

(134)
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According to (123)
ax = 1 — af — ß. (135)

When this is introduced in (132) and (134) we gel the fol
lowing two differential equations for ß and c^:

= -Wepaf-W(eP+e~p)ß + Wep, (136)

= -(FC+D)af-FCß+FC. (137)

When (136) is solved with respect to a¡ and the result in
troduced into (137), the following second order differential 
equation for ß is obtained:

d^+[W(e”+e-p)+FC + D]d^

+ [FCWe~l‘ + DW(eP+e~p)]ß — DWe’> = 0.
(138)

The initial conditions arc the same as indicated above, viz.:

The general solution of (138) is of the form: 

ß (0 = cle + C2e ^2Í+/?contr» 

where the constants À1 and A2 are given by:

^■1 4- Ä2 — W (ep 4*  e p) -T FC T D

Ax.A2 =W[FCe_p + 7)(ep + e“p)].

/^contr according to (138) is:

ß = ___
contr FC We~p4- 1)\V (eP+ e_p)

1

14-

(139)

(140)

(141)
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The integration constants cx and c2 are given by the initial con
ditions:

and

C1 C2 4“
1

0 — cxÂx 4- c2Â2.

(142)

The solution introduced in (139) gives

(143)

Hence, the length L (/) = 1 + 3 ß (/) changes as a function of 
time according to:

= LcoMr + AL (144)

where the final shortening AL is

11
l + e-2p e“2p

— L , = 3 contrAL =

The shortening velocity V (t) expressed in units of La per second 
is per link of the chain according to (144):

V(0 = -^7 = (146)
(It Z2 ^1

In accordance with the assumptions made about the initial state 
it is seen from this expression that the shortening as a function of 
time begins with the velocity zero. By differentiation of (146) we 
find that the velocity is at its maximum at time /0 determined by:

i. e.
= â8e

(147)
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The shortening dL(/0) in this state according to (144) is

1 £0_____

or according to (147):

(148)
Å2 — Aj 

A2
^■2---- ^1

AL(t0) = = AL 1-

dL(i„) = AL l-rK-
^2 ^1

The course of shortening in the muscle fibre starts with a maximal 
velocity after a latent period of about 25 msec. (0° C.). There
fore, the parameters of the transmutation chain zx and Â2 are 
adjusted in such a way that the maximal shortening velocity is 
reached when only a minor part of the shortening has been 
attained. According to (148) this will be the case when

A2 »

For example A2
Ai

= 20 gives

(149)

= 0.10 and Ax/0 = 0.16

and 2 = 100 gives = 0.036 and Ax/0 = 0.046.Xj ¿A Lj

According to the equations (140) defining and Â2, the condition 
(149) is fulfilled when

and thus also
FC « W, 

D « VV. (150)

These assumptions imply that fixation and defixation are con
sidered to be slow processes as compared with the transmutations 
a ß. That this is justified can be seen from the curves in 
fig. 86 showing the course of relaxation, i. e. the course of elonga
tion after the cessation of tetanic stimulation, and the course of 
the change in length after a quick unloading. The latter, which 
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must be determined chiefly by the a ß transmutations, pro
ceeds with much higher velocity than the process of relaxation 
(desactivation), the course of which is determined by FC and I) 
as well (see below).

With the assumption given in (149), the course of shortening 
as a function of lime (144) is practically exponential with the 
time constant since the term of the expression containing 
e~^2l will soon attain values which are extremely small as com
pared with e~This course of shortening as a function of time 
is seen in fig. 98 a for different values of e2p, with FC = 9 sec.-1 

FCand — = 30. A comparison shows good agreement between 

these curves and the experimentally found time course of shorte
ning in isotonic tetanic contraction (fig. 98 b).

Thus, the theory for the contraction of the transmutation 
chain can account for the decrease in shortening velocity with 
time in the muscle fibre. In qualitative terms this can be under
stood in the following way: at the moment of stimulation, when 
most a links are available for fixation, the velocity of fixation 
is maximal and with a certain delay (/0. cf. p. 262) gives rise 
to a maximal shortening velocity. Then, the velocity decreases 
owing to the gradual decrease in the possibilities of fixation. 
This decrease is counteracted only partially and little by little 
through the formation of new a links by thermal agitation.

The maximal shortening velocity Vo according to (146), (147) 
and (149) is

V^^AL. (151)

Â À
Thus, 2 = 20 gives: Vo = 0.85 and .2 = 100 gives:Xi ÄL
Vo = 0.955 Âj -AL.

in equation (140).

Thus, assuming (149) we get

IT [FCe p + I) (e' + e 7 )j FC
IV (e" + e~") + FC + 1) ~1 + ep

(152)

Introducing (152) and (145) in (151) we get the following ap-
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proximate expression for the maximum shortening velocity of a
transmutation chain:

v“V3+7v (1M)
This expression can also be derived from the following simple 

arguments, which are applicable in the analysis of other pro
perties of the transmutation chain as well.

Assuming that the transmutations represent quick processes 
as compared with both fixation and defixation, it is justified to 
suppose that the following relation is valid during the whole 
course of shortening:

(154)
«1

Introducing this in (123) we get

Hence :
dß 1 ddf
~dt^~l + e~2p,~dt'

(155)

(156)

The initial velocity with which the a elements are fixated according 
to (134) is:

(157)

Introducing (157) in (156) one obtains

dß\
d/Lt^(l + e2p)(l + e-2p)' (158)

This corresponds to the expression (153) for the maximal short
ening velocity Vo.

The force-velocity relation expressed by (153) is given in 
fig. 96. With FC = 9 sec.-1 and e2p° = 100, the theoretical 
curve shows relatively good agreement with the experimental 
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one obtained from the muscle fibre. This must be considered 
an expression of an actual agreement between theory and 
experiment in the range of loads examined. However, it must be 
kept in mind that the experimental shortening velocity is the 
external velocity and not the velocity with which the contractile

fy,oe2P
Fig. 96. Maximum shortening velocity as a function of the load for the transmutation 

chain and for the muscle fibre.
Upper curve: transmutation chain.
Lower curve: muscle fibre (0° C.).
abscissa: above: load on the fibre in units of Po;

below: tension in the chain expressed as log10r2p.
ordinate: shortening velocity in Lo per sec.

substance itself shortens. Thereby the difference between the 
experimental and the computed curves can be accounted for in 
the following way: the initial maximum which is found in the 
experimental curve has been interpreted as being caused by the 
take-up of the slack, which must be most pronounced at small 
lengths. The fact that the experimental curve has a steeper slope 
at moderate loads in a range in which the theoretical curve is 
slightly concave towards the abscissa is explained by the changes 
of the flow velocity with the load which occur in the visco-elastic 
series element of the muscle fibre. At low loads the How velocity 
must increase with increasing load on account of an increasing pro-
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Lability of disrupture of points of entanglement. At high loads 
the possibilities of a flow are restricted owing to the better align
ment of the structure (cf. p. 205, Part III).

The variation in time of the degree of fixation a¡ can be found 
by inserting ß (t) given from (143) in (136). This gives:

(159)

Introducing the assumptions (149) and (150) into (159) we gel 
the following approximate expression:

(160)

where Zr is determined from (152).
Comparing the expressions (144) and (159) for dL(f) and 

cij (t) the following relation is obtained:

«.(()• (161)
1 + e

Thus, the shortening is approximately proportional to the degree 
of fixation. This is of interest for the understanding of heat 
production during contraction (cf. p. 284).

It is now possible to relate the time-interval t0 (147) re
quired for the transmutation chain to obtain maximal shortening 
velocity to the latent period of the muscle fibre. According to 
(152), (140), and (147) the assumptions (150) give the following 
approximate expression for t0:

W(ep+e~p)
log (147 a)
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Table 13 contains values for t0 in msec, calculated from (147 a) 
for different loads (i. e. different values of e2p) and with FC =

FC9 sec.-1, — = 30 and VV = 50, 100, and 200 sec.-1.

Table 13. 
“Latent” period t0.

e2p- 1 4 9 36 100

W — 50 sec. 1 ............... 30.3 32.7 29.6 20.5 14.2
VV — 100 sec.-1............... 18.6 19.1 16.9 11.4 7.8
W — 200 sec.- 1............... 11.1 10.9 9.5 6.3 4.2

It is seen from the table that the times t0 are of the same 
order of magnitude as the experimentally determined latent 
periods for the muscle fibre. Moreover, for loads < 0.5 
(e2p° = 100) /0 varies only slightly with the load in accordance 
with the approximately constant latent period found in the muscle 
fibre.

Relaxation.
Let us consider a transmutation chain which under the 

load p is contracted tetanically at the concentration C of the 
fixating factor. When stimulation is interrupted, the concentration 
C of the fixating factor will decrease, since it will gradually be 
consumed. In the following analysis it is assumed that the con
centration C is zero immediately after the cessation of the stimu
lation. Obviously this is a simplification as compared with the actual 
process in the beginning of the relaxation of a muscle fibre. The 
removal of the fixating factor causes an elongation of the chain, 
a relaxation. Its mechanism is a spontaneous defixation of fixated 
elements. Thereby the frequency of transmutations a -> ß is in
creased and the result is a true elongation of the chain.

The equations of motion for the course of relaxation can be 
derived from the equations (132)—(134) for the course of short
ening by putting C = 0. Thereby we get:

(162)
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The initial conditions are:

Solution of these equations performed in the same way as was 
done for the equations for the course of shortening gives

¿(0 = &
./Z2 Ia!

______ fh___ e~^t

/Z2 f^i.
(165)

where and /z2 are determined by the equations which cor
respond to (140)

i. e.

+ fi2=W (ep + e~p) + D

7*1^2  = (ep + e-p),

Zh = D

f¿2 = W(ep + e-p).

(166)

(167)

The relaxation velocity Vd (/) expressed in units of La per 
second is per link according to (165):

V (() = eilh 
a //2 —

(168)

It is seen from this expression that the relaxation begins with 
a velocity zero, in accordance with what could be expected from 
the initial conditions. With the former assumptions for VV and D 
we get the following expression for the maximum relaxation 
velocity Vd according to (168) and (167)

Vd° DAL. (169)
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Introducing (145) we get:

V(1 ~
3 FC (170)

The same expression can be obtained from the simple considera
tions accounted for on p. 265 in connection with the determina-

¿og/0e2P
Fig. 97. Maximum relaxation velocity as a function of the load for the transmutation 

chain and for the muscle fibre.
exp. : muscle fibre (0° C.).
15 and 30: transmutation chain.

FC The figures on the curves denote the corresponding values of — •
abscissa: above: load on the fibre in units of Po;

below: tension in the chain expressed as log10 e2F
ordinate: relaxation velocity in Lo per sec.

tion of the maximal shortening velocity. The maximal relaxation 
velocity in the muscle fibre is reached later than in the single 
transmutation chain. However, this deviation between theory 
and experiment could be expected considering that in reality the 
concentration of the fixating factor will disappear slowly anil 
not suddenly, as assumed in our calculations. In spite of this 
difference it is of interest to compare the velocity of relaxation as a 
function of load in the transmutation chain and in the muscle 
fibre.

In fig. 97 the maximum relaxation velocity for the transmutation 
FCchain corresponding to - = 15 and 30 and FC = 9 sec.-1 
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is shown as a function of the load. The theoretical curves are of 
the same type as the experimental ones. Both have a maximum 
and the theoretical velocities have a similar order of magnitude.

The development of tension in the isometric tetanic 
contraction of a transmutation chain.

We shall consider a transmutation chain which originally is in 
equilibrium at rest at load 7\. At time f = 0 the fixating factor 
is suddenly released in a concentration C. If we keep the length 
of the chain constant corresponding to a constant number of ß 
links, the gradual fixation of a links will cause a rise in the ratio 
between ß links and free a links. Thereby a gradual rise is ob
tained in the tension of the chain. This corresponds to an iso
metric contraction of a muscle fibre.

The development of tension is determined on the basis of 
the general equations of “motion” (132)—(134) considering 
p = p (/) as variable. Since the length remains constant, we 
have:

ß (0 = Prest (Pl)

and hence

Introducing (171) and (172) in (132) we get

«.(') =/ircsle-2',<0

Using (123), (171), and (172) the equation of motion

= D(,l-ß(pl)-al)-FCal.

i. e.

(Pi) — (FC + D)«,.

(171)

(172)

(173)

for cq is

(174)

Solution of (174) gives

(175)
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Introduced in (173) this gives

e2(p(0-Pj)
(176)

Fig. 98 a. Development of tension and the course of shortening in isometric and 
isotonic tetanic contraction of the transmutation chain.

a. tension
Z>, c, and d shortening,
b. e2P = 1,
c. e*P = 4,
d. e2p — 9.

FCIt is furthermore assumed that = 30 and FC = 9 sec.-1.
abscissa: time in sec.
ordinate: increase in tension and shortening divided by their final values.
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Hence the increase in tension

¿¡P = ¿P (0 = p—Pi

(177)

It is seen from this expression that the increase in tension is 
independent of the initial load and only determined by FC and D. 

Fig. 98 b. Development of tension and the course of shortening in isometric and 
isotonic tetanic contraction of the muscle fibre (0° C.).

A. extra tension (length 140).
li. shortening (load 0.2 Po corresponding to e2p 2.5 cf. fig. 96). 
abscissa: time in sec.
ordinate: increase in tension and shortening divided by their final values.

Dan. Biol.Medd. 21, no.7. 18
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The development of tension computed for — = 30 and 

FC = 9 sec.-1 is given in fig. 98 a. In the same figure examples 
are given for the theoretical course of shortening (cf. p. 264). 
With e2p = 1, tension and shortening in the single transmutation 
chain develop with approximately the same velocity. With 
e2p  4, yie development of shortening is delayed as compared 
with the tension. This difference will increase with increasing 
values of e2p (cf. the expression for Zx (152)).

The agreement between the experimental and the computed 
course of tension as a function of time is seen from figure 98 a 
and b. Both in the muscle fibre and in the transmutation chain 
the initial load is of subordinate importance. The fact that the 
course of shortening in the experiments is essentially different 
from that of the development of tension has been accounted for 
in Part III (cf. p. 172).

Release of a tetanically contracted transmutation chain.
Let us consider a transmutation chain which during tetanic 

contraction is in equilibrium with the load pv Then the chain 
is suddenly released under continued stimulation and corre
sponding values of length (L) and tension (p) are determined 
during the release.

We assume again that the transmutations a ß occur with 
high velocity, i. e.

(178)

Furthermore, it is postulated that the release is so fast that 
the degree of fixation of a links (aß) can be considered constant 
during the change in length. From (123) and (178) follows

i. e.

ß = l_acontr(pi)_^e-2p

ß = i -arlr(pi)
1 + e“2”



Nr. 7

and hence:

275

j ^contr / D \
^release (p) = 1 + 3 • <179)

2^CThe calculated release diagrams for — = 30 are shown in 

fig. 99 for different degrees of fixation. In comparing these cal-

Fig. 99. Quick release diagrams for a tetanically contracted transmutation chain. 
Thick curves: static length-tension diagram at rest and during tetanic contraction 

for the transmutation chain = 30^.

Thin curves: release diagrams. The figures on the curves denote the corresponding 
values of a,.

abscissa: length per link in units of La. 
ordinate: tension expressed as log10e2p.

culated curves with the experimental ones, they must not be 
related to the release experiments in which time was allowed 
for the adjustment of a stationary value (cf. fig. 50). However, 
comparison can be made with the semi-dynamic diagrams as 
represented in fig. 19 in a previous communication (Buchthal 
1942). As to the relation between shortening heat and fig. 99 
see p. 284.

18*
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The static length-tension diagram for a tetanically 
contracted system of cross-linked transmutation chains.

Let us determine the static length-tension diagram during 
tetanic contraction for the two systems previously considered, 
viz. the system consisting of transmutation chains with different 
equilibrium lengths and the slack-free system of cross-linked 
chains.

1). We first consider the system of chains with different equili
brium lengths. The length L of a chain with N links in the 
tetanically contracted state at load p (N) is determined by (130):

L = N

Therefore, provided that

i. e.

L>Nl 14
3

1 4- e2Pext,a

A:1 < L

J + c«P„tr.

(180)

(181)

a chain with A'1 links will be under tension at length L of the 
system. The tension p (N) in a chain satisfying this condition is 
according to (180) determined by:

2 (p (N) -pextra) = log . (182)

The mean tension p at length L for the system of chains is (104):

Nmax
p = Ñ^Ñ (,83)

N = N»

where now-Vmaxis the lowest of the figures N2 and----------- r------ •
1 + k• 1 -4- »“"extraN i-re

Introducing n — - and replacing the summation with an inte

gration, (182) and (183) will give:
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2 P = 2Pextra
1 l,nniax L/N^ — Il 

n2 - f Jilog Tn-L/Nt dn. (184)

From this wc obtain:

2P = 2/'extra'
1

7í.¿ — 1
(L/N.-X) log (LM-1)

-(W-^max) tog Wl“%x)

+1(4-1/^) log (4-L/AQ

“l^^max-Wi) tog (4nmax-Wi)

(185)

Choosing as previously N2 = 1.3 A\, and putting a Hookean 
FC elasticity in series with the system, we obtain for = 15 

and 30 the length-tension diagrams shown in fig. 92c. Com
parison with fig. 92 a shows that this more complicated model 
just as the single transmutation chain gives good agreement with 
the diagram for the tetanically contracted muscle fibre.

2). In order to calculate the static length-tension diagram for 
the tetanically contracted slack-free system of cross-linked trans
mutation chains, we will assume that the fixating agent can act 
both on free a-links and on a-links in aggregates. Furthermore, 
we assume that fixation does not alter the ability of the links 
to form cross-linkages. The equilibrium conditions corresponding 
to (124) and (125) show that with these assumptions the length
tension diagram in contraction can be obtained from the diagram 
at rest in the same simple way, as the contraction diagram for 
a transmutation chain can be derived from its diagram al rest.

Fig. 92 b shows the contraction diagrams obtained in this 
way from the rest diagrams shown in the same figure. The 
difference between these contraction diagrams and that of a 
single transmutation chain is only of minor importance. The 
similarity with the diagrams of the muscle fibre is striking. It is 
further increased when a Hookean elasticity is put in series 
with the cross-linked system of transmutation chains (fig. 94). 



278 Nr. 7

Shortening velocity and relaxation velocity in a system of 
cross-linked transmutation chains.

As shown in the preceding section, there was a remarkable 
similarity between the force-velocity relations both with regard 
to shortening and relaxation in the single transmutation chain

Fig. 100. Maximum shortening velocity as a function of the load for the slack-free 
system of cross-linked transmutation chains.

The figures on the curves denote the corresponding value of K, defined by (117).
The curve denoted by 0 is that for a single transmutation chain. 

abscissa: tension expressed as log10 e2p. 
ordinate: shortening velocity in Lo per sec. divided by FC.

and in the muscle fibre. This makes it worth while to analyse the 
force-velocity relations in a system of cross-linked chains, the 
mechanical reactions of which in several respects are more 
closely related to those of the muscle fibre. Let us for this purpose 
consider the slightly simplified model with cross-linkages but 
without slack (p. 249). By using the formerly applied arguments 
based on the assumption given in (150) we get the following 
expressions for the maximum velocities of shortening and re
laxation :
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3 FC
(186)

and
3 D

(187)

V ~
°''l+e-2"

Vo
^l+e-21’ / 9

N /contr

Fig. 101. Maximum relaxation velocity as a function of the load for the slack-free 
system of cross-linked transmutation chains.

The figures on the curves denote the corresponding values of K, defined by (117). 
The curve denoted by 0 is that for a single transmutation chain.

abscissa: tension expressed as log10e2p.
ordinate: relaxation velocity in Lo per sec. divided by FC.

where —denotes the fraction of links which are fixated but
\ W / / X

not cross-linked. By introducing the values for ( ~| ) and
V*  /rest

we can calculate the force-velocity relations given in 
contr

figs. 100 and 101. A comparison of these curves with the relation 
found for the single chain shows that the application of the 
cross-linked system mainly changes the level but not the shape 
of the curves. Thus, the cross-linked system will be suited to 

»
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describe force-velocity relations as well, when the values chosen 
for FC are correspondingly increased as compared with those 
applied in the single chain.

Thermodynamics and transmutation model.
1. Fibre and model at rest.

With the assumptions previously made about the potential 
energy barrier governing the a^.ß transmutations, the temperature 
dependence of the static tension P of the transmutation chain 
corresponding to a given length L according to (90) and (79) is 
determined by:

PÅ = const.,

i. e.

P = const. (188)
A

tern- 
fibre

tern-
pure

Thus, the static tension is proportional to the absolute 
perature 7’, so that the chain behaves like a substance with 
kinetic elasticity.

However, as accounted for above, the experimental 
perature coefficient of the static tension of the muscle 
is at most only one third of that corresponding to kinetic 
elasticity .This implies that the simple kinetic theory of elasticity 
is not suited for the description of the elasticity of the muscle 
fibre. A calculation of that part of the tension ^7’^j which 

might arise from changes in entropy, based on the experimentally 
determined temperature dependence of the static tension of the 
muscle fibre (Buchthal et al. 1944 a), clearly demonstrates this 
fact.

From the curves of fig. 102 it is seen that entropy at small 
degrees of stretch may account for at most approximately 40 
per cent of the total tension in tlje fibre. With increasing elongation 
the possible part played by entropy decreases considerably and 
at length 180 it is reduced to only 10 per cent. Corresponding 
results were obtained by Woods (1940) in an investigation of
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Fig. 102. The component of the tension in the resting fibre arising from entropy, 
a) length-tension diagram, 0° C.

ordinate: tension and possible entropy contribution in units of Po. 
abscissa: length in per cent of Lo.

the temperature dependence of the static tension in wool fibres 
and myosin films.

While the single chain cannot adequately account for the 
experimental findings, the system of cross-linked transmutation 
chains can help to understand the reduction in the temperature 
coefficient which characterizes the muscle as compared with the 
single chain. A rise in temperature will cause a change in the 
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textural pattern, which results in a decrease in the number of 
points of entanglement. This is caused by the rise in the kinetic 
energy of the colliding particles, which will increase the pos
sibility of disrupture of cross-linkages by thermal collisions. 
Thereby, the kinetic increase in tension which is caused by the 
increase in temperature is partly counteracted, and the resulting 
temperature coefficient of the static tension is reduced as compared 
with that of the single transmutation chain.

2. Heat production during contraction.

Contraction is accompanied by a heat production, termed 
initial heat, which according to Hill (1949a, 1950a) consists of 
two components, the heat of activation and the heat of main
tenance on the one hand, which are practically independent of 
the mechanical conditions, and on the other hand the heat of 
shortening which varies with the degree of shortening. Sub
sequent to contraction follows the positive heat production which 
arises during relaxation and which is considered by Hill to be 
caused exclusively by the degradation of work to heat. Finally, 
after relaxation there is the heat of recovery.

The heat of activation starts to develop al a maximum rate 
and precedes in time the development of tension and shortening. 
During a twitch it is independent of the initial length, the 
tension, and the amount of work produced. Heat of shortening, 
on the other hand, is proportional to the amount of shortening 
but independent of the work produced.

Obviously it is imperative for any theory of contraction that 
an attempt be made to account for these different phases of heat 
production, for their rate of development, and their dependence 
or independence of the mechanical conditions.

The present theory assumes a fixation of short linkages as 
an essential prerequisite for the process of contraction. Let us 
assume that this fixation is accompanied by a positive heat pro
duction arising from the reaction heat produced by the interaction 
of groups in the a link with the fixating factor and from the 
decrease in internal energy due to the exclusion of the short 
modification from a transmutation. Since at the start of stimulation 
the fixating factor can attack the relatively largest number of 
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short linkages, the rate of fixation is maximal at the beginning 
of stimulation. Therefore, heat production must quickly attain 
its maximum rate.

As accounted for above, the fixation of short linkages changes 
the equilibrium between the number of short and long linkages 
in the active chains, the probability of transmutations from the 
short to the long modification being reduced. Thereby a pro
gressive shortening develops in all chains which will appear 
externally as an increase in tension or shortening in those chains 
which are loaded, and which will cause an increase in tension or in 
shortening of the fibre as a whole. There are, however, a number 
of signs which indicate that some of the chains do not participate 
in the load, either because of slack or because their orientation 
is different from the longitudinal axis of the fibre. Thereby 
fixations will occur which give an intrinsic shortening with 
“heat of fixation’’ without being accompanied by a corresponding 
external increase in tension or shortening. Thus, part of the 
initial heat production is recorded within the latent period during 
the intrinsic shortening, just as in the case of the initial rise 
in stiffness which started before there were external signs of 
development of tension.

On this basis it can be understood that a heat production 
occurs in the initial phase of contraction which is independent 
of the shortening (25 per cent to 50 per cent of the total heat, 
Hill 1949b, Hill 1950c). Naturally this interpretation applies 
chiefly to low loads, where the heat production should be deter
mined exclusively by the slack in the minute structure. Assuming 
that heat of activation arises from internal shortening which 
causes the disappearance of slack, one should expect that the 
amount of heat would be reduced when contraction is initiated 
at high initial length, since slack is diminished. The protracted 
production of heat which actually occurs at high elongations 
could partly be interpreted by this reduction in slack (Hill 
1950c). However, the finding that the amount of heat of activa
tion is of the same order of magnitude at low and high degrees 
of stretch needs an additional explanation. One might assume 
that heat of activation at high stretch is due chiefly to the extension 
of the previously mentioned visco-elastic series element (cf. p. 170). 
The elongation of this element is compensated for by the internal 
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shortening which in turn gives rise to heat of activation in the 
active part and heat arising from degraded work in the passive 
part of the structure.

If the transmutation chain is allowed to shorten, the number 
of fixations will increase approximately linearly with the isotonic 
shortening (cf. p. 267). The amount of heat produced will only 
depend on the number of fixations and not on the velocity with

Fig. 103. The ratio between degree of fixation and shortening as a function of the 
tension in the transmutation chain.

abscissa: tension expressed as log10 e 1.
3 af

ordinate: .—where a, is the degree of fixation and AL is the shortening; 
AL f
approximated by 1 + e—2p.

which the fixations occur, i. e. it will be independent of the 
shortening velocity. Thus, that part of the shortening in the chains 
which is not manifested externally, accounts for the heal of activa
tion ; while the part responsible for the external shortening accounts 
for the heat of shortening which at a given load is proportional 
to the amount of shortening. This is in agreement with the ex
perimentally found proportionality between heat of shortening 
and shortening (Hill 1938, 1949a). In the transmutation chain 
the proportionality factor for this relation will vary with the load. 
Fig. 99 gives the length-tension relation for a transmutation chain 
with different degrees of fixation (different values of af). Under 
isotonic conditions a given variation in a, causes a larger variation 
in length at high loads than at low loads. By definition a given 
variation in a¡ corresponds to a given amount of shortening. 
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Therefore, the shortening heat per unit of shortening decreases 
with increasing load. The proportionality factor for this decrease 
£ 1 + e~2,} is given in fig. 103. A corresponding tendency to a 
change in the proportionality factor between heat of shortening 
and shortening (a) can also be observed in whole muscle (cf. 
e. g. the experiment given in fig. 7, Hill 1949b). The theo
retically found decrease in shortening heat with increasing load 
may, however, be concealed in lhe muscle. Considering that espe
cially at high load the work of the transmutation chains is impeded 
by shunt and series elastic elements, a given external shortening 
velocity will correspond to a somewhat higher internal short
ening, which in turn is associated with a mechanical loss and 
an increased heat production.

The fact that tensionless relaxation occurs without a measur
able heat production according to Hill (1949b) is due either 
to a relaxation which actually has no heat production or to the 
compensation of a negative heat by a corresponding positive 
heat production. In an earlier part of this paper we have dealt 
with the strong internal forces which must be assumed to arise 
during contraction and which impede shortening of the muscle fibre 
even when it does not shorten against an external load (elastic lock
ing). This internal resistance represents a certain amount of potential 
energy which is degraded to heat in the relaxation phase. Hence, 
if there is no external positive heat production, one must expect 
a negative heat associated with the process of relaxation which 
neutralizes the previously mentioned “frictional” heat.

Il is in agreement with this assumption, that a slow stretch 
during isometric contraction is associated with a negative heat 
production (Hill 1938, Fenn 1924, Aubert 1948); this effect 
is interpreted as being due to an enforced relaxation in the 
structure arising from the elongation.

Maintenance of contraction in a tetanus is associated with 
heal of maintenance. According to Hill (1949a) this is con
sidered the summed effect of the heat of activation released 
by each stimulus, implying that the heat production during re
laxation is zero. At the level of tetanic contraction, activation 
and relaxation balance each other and it is lhe intensity of re
laxation which determines the intensity with which a reactivation 
will lake place. As mentioned, there are certain indications that 
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relaxation is accompanied by a negative heat which counteracts 
the positive heat produced by the intrinsic work of deformation. 
According to this conception heat of maintenance would be 
interpreted as the difference between heat of activation (i. e. the 
positive heat accompanying fixation) and the negative heat con
comitant with relaxation. It may be emphasized that the occur
rence of a heat of maintenance is incompatible with the assump
tion of reversibility between fixation and defixation since this 
would imply that heat of maintenance was zero. Hence, 
the negative heat supposed to be associated with relaxation must 
be somewhat less than the positive heat which accompanies 
fixation and the mobilization of the fixating factor.

According to Abbott (1951) the heat of maintenance de
creases asymptotically within the first 5 seconds of tetanic con
traction. This course of heat production may indicate that the 
asymptotic value corresponds to the actual heat of maintenance, 
while the excess heat is the result of the internal adjustment 
in the texture (internal shortening in slack chains and degraded 
work arising from the elongation of the visco-elastic series element). 
This interpretation is supported by the finding that the maximum 
relaxation velocity within the same time interval of 5 seconds 
(0° C.) is reduced in the same way as heat of maintenance 
(p. 183). Moreover, the time course of adjustment after an 
isotonic transient during contraction extends over several sec
onds as well.

Summary of transmutation theory (Part IV).
In the first section of this Part a review is given of direct 

investigations of the minute structure of muscle. This includes 
investigations with the ordinary microscope, measurements of 
birefringence, transparency and diffraction with visible light, 
electron microscopy, and X-ray analysis. The muscle fibre in its 
minute structure has a relatively good, but not complete longitu
dinal orientation. This orientation is somewhat increased by both 
stretch and contraction. However, the increase in orientation by 
stretch is essentially less than in a substance with pure kinetic 
elasticity. There exists a considerable degree of orientation in the 
muscle fibre already at equilibrium length and the deformation 
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caused by stretch and contraction must be attributed mainly to 
alterations in the length of the chain molecule.

The basic minute structural element is assumed to consist 
of a molecular chain characterized by two states of equilibrium 
with different lengths. A transmutation from one state to the 
other is described as a transition over a potential energy barrier, 
from one potential minimum to another. The energy for transmuta
tions is derived from thermal collisions and from the external 
load acting on the chain. The transmutations will cause a con
tinuously repeated alternation between the two modifications 
within the molecule. A chain of this type will display both 
long-range elasticity and delayed adjustment, i. e. visco-elasticity.

The static and dynamic mechanical properties of a trans
mutation chain were analysed quantitatively and compared 
with the experimental findings on isolated fibres at rest. Further
more, chains with transmuting links as structural elements give 
a possibility to consider in a new light the mechanical reactions 
and the minute structural changes which accompany contrac
tion, thereby giving a possibility to develop a theory of con
traction in quantitative terms.

The static properties of the single transmutation chain were 
derived from a calculation of the probability per time unit 
(Wa + ß) of the occurrence of a transmutation from the short 
(a) to the long (ß) modification and vice versa (Wß+a). The 
probability per second of an a -> ß transmutation is given by 
the expression

A — PÅ 
W ve~ kT , 
a + ß

where A represents the energy of activation, P the load acting 
on the chain, Â the distance between the equilibrium position 
(potential minimum) and the peak of the potential barrier, 7r7’ 
the temperature energy, and v a factor giving the frequency of 
thermal collisions with due consideration to the spatial possi
bilities of a transmutation.

Conversely, the probability per sec. (Wß + a) of a transmutation 
from the long to the short modification is given by:

VF " ve kT~.
ß->a
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The static length-tension diagram of the transmutation chain 
is similar to that of the resting fibre (cf. fig. 92 a and b). The 
minor deviations can be accounted for by assuming a Hookean 
elasticity in series with a system of cross-linked transmutation 
chains. Owing to the non-uniform distribution of tension and the 
slack which will occur in this network, even at high degrees of 
stretch part of the links will be in the a modification. This may 
explain the difficulty of clearly differentiating in the X-ray dif
fraction pattern between a pure a and a pure ß state.

Dynamic properties of a single transmutation chain as com
puted from the adjustment after a sudden increase or decrease 
in load (isotonic transient) can be expressed in terms of a single 
Voigt-e/enieni. A cross-linked system of chains, on the other 
hand, can be described by a spectrum of retardation limes for 
a Voigt-mode/ of a similar type as that used to describe the dyna
mic properties of the muscle fibre. The long retardation times, 
characterizing the course of creep and stress-relaxation in the 
muscle fibre, arc mainly caused by disrupture and reformation of 
points of entanglement in the texture in which the transmutation 
chains are organized. The short retardation times correspond to 
adjustment in the chains themselves as well.

The configuration of the minute structure during contraction 
is assumed not to diller in principle from that of the resting 
fibre. In the model of transmutation chains, developed to describe 
the mechanical properties of the resting fibre, the length of the 
molecular chain is determined by the ratio of short and long 
links. At rest this ratio is influenced by the load via its influence 
on the probability of transmutations. If we assume the pro
bability of a long -> short transmutation to be increased or the 
short -> long transmutation in some way to be reduced, an 
active shortening can be obtained at constant load. The decrease 
in length in contraction is taken as an expression of a relative 
increase in the number of links in the a modification. This in
crease is assumed to arise from a fixation of a number of links 
in the a-state in such a way that they are prevented from parti
cipating in the a ß transmutations. The fixation is thought to 
be brought about directly or indirectly by the stimulus, e. g. by 
a “factor” which reacts with the a links of the protein chains, 
which thereby are locked and excluded from transmutation.
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For the time being the physico-chemical correlate of this fixation 
can only be a matter for speculation, and it remains an open 
question whether it consists in the removal or in the addition of 
some compound to the a link. In the active phase we assume 
a continuous fixation and defixation (i. e. disappearance of 
fixations) of a links. The frequency of fixations is assumed to 
be proportional to the concentration C of a fixating agent and 
to the number of possibilities of fixation, i. e. proportional to 
the number of non-fixated a links. The frequency of defixation 
on the other hand is supposed to be proportional to the number 
of a links in the fixated state. On this basis we have calculated 
both the static and dynamic behaviour of the chain with fixated 
links. The S-shaped length-tension diagram of the tetanically 
contracted transmutation chain is in good agreement with the 
experimental findings (fig. 92 a and b). In the transmutation chain 
the curves for isotonic and isometric contraction coincide. The 
difference found in the experiments can be accounted for by the 
internal forces arising in the more complicated model with cross
linked chains The increased stillness which characterizes con
traction can be understood from the reduced number of links 
which can participate in the transmutations. Thus, if half of 
the links arc fixated, the stillness will be doubled. The theory 
can account not only for stationary or quasi-stationary properties 
in contraction. There is good agreement between the calculated 
increase in tension in a chain and the development of tension as a 
function of time found in the experiments (fig. 98 a and b). Both in 
the muscle fibre and in the transmutation model the initial load is of 
minor importance for the development of tension. The theory can 
also explain that a shortening develops more slowly as a function 
of time than a change in length when a transient is applied to the 
resting fibre. Since the largest number of a links is available 
for fixation at the beginning of contraction, shortening with a 
certain delay will attain a maximum velocity. Then it will continue 
more slowly as possibilities arise for fixation when new links 
are formed by thermal collisions. The shortening is approximately 
proportional to the degree of fixation. This is of interest for the 
understanding of heat production when shortening heat is 
assumed to arise from the processes associated with the fixation. 
The relation between shortening velocity and load as calculated 
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for the transmutation chain compares well with the experimental 
force-velocity relation (fig. 96).

Relaxation is considered to be brought about by the removal 
of the fixating factor, thereby giving rise to an increased pos
sibility of a -► ß transmutations which in turn cause an elonga
tion of the chain. As a function of load the computed curves 
are of the same type as the experimental ones (fig. 97). Both have a 
maximum at a moderate load and the calculated velocities are of 
a similar order of magnitude. The investigation of a cross-linked 
model of transmutation chains with fixated elements shows in 
principle the same properties as the single transmutation chain 
with respect to the length-tension diagram, the force-velocity re
lation, and the relation between relaxation velocity and load.

Thermodynamics'. The temperature dependence of tension at 
constant length in the single transmutation chain at rest corresponds 
to a proportionality between tension and absolute temperature, just 
as in a pure kinetic elasticity. However, with increasing temperature 
the textural pattern arising from the cross-linked network of 
transmutation chains will become more flexible, the number of 
points of entanglement being reduced. Thus, the interaction be
tween the chains will reduce the temperature coefficient. In the 
experiments on the isolated resting fibre the temperature depen
dence maximally amounted to one third of that which cor
responds to a proportionality with absolute temperature and, 
therefore, entropy would account for at most one third ol the 
static tension. This finding is considered an indication that the 
simple kinetic theory of rubber-like substances does not apply 
to the muscle fibre.

Finally an attempt was made to interpret the different phases 
of heat production during contraction in terms of the trans
mutation model. Assuming that fixation is accompanied by a 
positive heat production, the latter will quickly attain its maximum 
value, since the velocity of fixation is maximal in the initial 
phase of contraction. Moreover, the proportionality which in the 
experiments on whole muscle was found to exist between short
ening and shortening heat (Hill 1938) corresponds to the approx
imate proportionality between fixation and shortening in the acti
vated transmutation chain. The fact that part of the heat produced 
(heat of activation) is recorded early after the stimulus and is 
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independent of the external mechanical conditions, such as load 
and shortening, is explained by the presence of slack elements 
the activation of which will cause heat without manifesting itself 
as external shortening.

It is by no means suggested that the scheme of minute struc
tural organization and function outlined here is final, but it 
appears to us that it comprises a framework with a simple 
theoretical basis into which most of the data for a large number 
of different experimental conditions can be quantitatively fitted 
with an error not exceeding the variation which is unavoidable 
in biological material.

19*



APPENDIX I
The non-linear length-tension diagram and the amplitude 

dependence of the stiffness.
A non-linear length-tension diagram can be expected to cause a 

variation of the vibrational stiffness with changes in the amplitude of the 
vibrations. In the following we shall investigate whether the approximately 
exponential length-tension relation for the muscle fibre which is found 
statically and dynamically:

P(L) ~ Psi.[e*( L-Lo)_i] (1)

can explain the direction and magnitude of the experimentally found 
variations of stiffness with amplitude.

The change in tension A P accompanying a small change in length 
y from an initial length L can be written as a Taylor’s expansion:

A P (y) = G ■ y + kt y2 + k2 y3 + • • • , (2)

where G, klf k2 • • • are constants depending on L, characterizing the 
length-tension relation. From (2) it is seen that

for y = 0, (3)

i. e. G is the stiffness at length L. If Iq = k2 = - • • = 0, we 
have a material which at least for small values of y, obeys Hooke’s 
law.

The higher order terms in (2) represent for the amplitudes applied to 
the muscle fibre only small corrections of the first order term Gy. 
From (1) we obtain the following expression for AP(y):

Comparison with (2) gives:

G(L) = x(P(L) + Ps/).

(4)

(5)

This shows that x is the relative stiffness.
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We now impose upon the fibre the external alternating force: 
a (/) = <t0 sin co f. Here cr0 denotes the amplitude of the force and co 
its cyclic frequency. The total system: muscle fibre plus equivalent
mass m 
motion :

of the recording system moves according to the equation of

dy
/n'rf/2~ +’Frf/+ p (?) = a° Sm 6

where ri— denotes the damping force. The resulting periodic motion 
dt

can formally be written: 

y (/) = a0 -J- a1 cos a)t sin co/ 4- a2 cos 2 cot b2 sin 2 cot 4~ • • • , (7) 

where the constants a0 a1 bY a2 b2 • • • depend on co and cr0. The 
main terms in this expression in our case, where the higher order terms 
in (2) are small, will be aY cos co/ and /q sin co/. The other terms only 
represent minor corrections.

We can define the resonance frequency co0 as the frequency at which 
Zq = 0, i. e. the main term of (7) is displaced 90° in relation to the 
alternating force. The resonance frequency co0 and the corresponding 
values of the constants in (7) can be determined from the infinite number 
of equations obtained when (7) and (2) are inserted in (6).

Neglecting the higher order terms in (2) one gets the well-known 
expressions:

"« = )/¿ (8) 

and
CTn

y (/) = y0cosco0/, where y0 = ——.

2
|, i. e.1 

order approximation is found to be approximately: —

proportional to the square of the ratio mentioned above. One might 
Zq a2

have expected that the change would be proportional to —±How-

The resonance frequency is independent of the amplitude cr0 and, there
fore, of y0 as well, i. e. we have no amplitude dependence in the first 
order approximation.

Next we will take into account the second term: k1y2 in (2). As 
mentioned, this term in our case is considerably smaller than Gy. 
According to (4) the ratio between the two terms is | xy. From the 
experimental values of x the ratio is estimated maximally to be of the 
order of magnitude of 0.10.

The relative change of the resonance frequency with amplitude 
which is half the relative change in mco2 (elastic stiffness) in the second 
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ever, the change is reduced to the amount stated since the term kYy2 
in the half-period where y > 0 causes an increase in stiffness, while in 
the half-period where y < 0 it produces a corresponding decrease.

The extra contribution to the relative change in resonance frequency
3 k a2arising from the third order term k2y3 is approximately: — -1 (ignor-
8 G

ing the influence of the damping which is of minor importance). The 
third order term thus gives either a positive or a negative contribution 
according as k2 > 0 or <0. Comparison with (4) shows that this con
tribution in the case of the muscle fibre is positive and equal to one half 
of that arising from the second order term.

Expressed as the decrease in mco2 with amplitude, the amplitude 
dependence resulting from the second and the third order terms in (2) 
can therefore be written:

Ca2, (9)

where C depends on G, k[t and k2, and to a smaller degree on Dis
regarding the dependence on r;, one obtains:

C=|x2G. (10)

If G' and G" denote the stiffnesses (i. e. znco2) corresponding to the 
amplitudes a't and a”, we have according to (9):

In the following table we show values of C calculated from (10) 
giving a measure of the amplitude dependence which can arise from 
the non-linearity of the length-tension diagram of the muscle fibre. 
For « the expression (5) is applied and for G we use the limiting value 
of niœ2 corresponding to very small amplitudes. Furthermore, Table 
14 contains values of C calculated from (11) giving the actually 
determined amplitude dependence. The data are based on a series of 
experiments with different fibre lengths. The equilibrium length on an

Table 14.
Amplitude dependence and length-tension diagram.

length in load P G' dynes G” dynes C C
per cent of Lo in dynes X cm-1 X cm-1 (10) (H)

X103 xio3 X107 X107
130............................ 140 10.0 9.0 0.42 145
155............................ 315 16.4 15.7 0.37 102
169............................ 670 31.3 28.8 0.56 362
201......... .................. 1310 58.5 52.6 1.16 855
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average amounted to 0.48 cm.; the equivalent mass m was 0.045 g, 
a' was 0.1 per cent, and a" 0.2 per cent of the equilibrium length.

It is seen from Table 14 that the amplitude dependence of mœ- 
which can be expected solely from the non-linear length-tension re
lation of the muscle fibre found dynamically and statically, is 300—700 
times less than that found experimentally.

(For mathematical details compare e. g. N. W. McLachlan 1950, 
chapter IV).

APPENDIX II
Amplitude dependence of vibrational stiffness.

The experimental variation of vibrational stiffness with amplitude 
could not be derived from the non-linearity of the length-tension diagram 
of the muscle fibre (cf. Appendix I). We had hoped that the transmuta
tion chains introduced in Part IV would give an adequate explanation. 
In these chains tension is no longer an unambiguous function of the 
length, since the velocity influences the length-tension diagram as 
well. However, a calculation of the behaviour of transmutation chains 
showed that changes in resonance frequency will only appear in the 
second approximation and, therefore, to a much lower degree than 
found experimentally. This agrees with the finding that the mechanical 
reaction of the single transmutation chain to an isotonic transient can 
be described in terms of a Voigt-element (a linear system) (cf. p. 246).

A system of parallel chains with different equilibrium lengths which 
can account for the initial slope of the length-tension diagram of the 
muscle fibre, cannot as such give a significant variation of stiffness 
with vibrational amplitude.

However, the presence of a large stiffness in series with the trans
mutation chains can give rise to a significant amplitude dependence 
of the stiffness. In the calculations it is permissible to consider formally 
the transmutation chains as Voigt-elements. The viscosity of a Voigt- 
element in a certain phase of the vibration period may prevent it from 
following the decreasing external force. This causes the element (i. e. 
the chain) to become without tension (slack). With increasing amplitude 
the probability of slack increases. Hence, one gets a decrease in stiffness 
with increasing amplitude. For suitably high amplitudes all the chains 
will be without tension during part of the oscillation period. This will 
occur when the inertial force plus the external alternating force exceeds 
the constant force acting on the fibre.

As previously mentioned, X-ray diffraction patterns strongly in
dicate the presence of a crystalline elasticity (Gc) in the muscle fibre. 
The elasticity of the contractile minute structural elements can be 
accounted for by transmutations between modifications of different 
lengths within the protein molecule (cf. Part IV). The essentially stiffer 
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crystalline elasticity is assumed to follow Hooke’s law and to have a 
stiffness exceeding that of the system of chains at the mean tension 
considered by e. g. 200 times.

In the quantitative treatment we consider a system consisting of 
a single transmutation chain in series with a Hookean elasticity Gc. 
Furthermore, the transmutation chain is treated as a Voigt-clement 
with an elasticity Gt and a viscosity 7/.

Fig. 104. Lissajous-figure relating the external alternating force and the resulting 
periodic motion of the system consisting of a Voigt-element in series with a Hookean 

elasticity plus an inertia.
Constant load = 1000 dynes.
Amplitude of the external alternating force =170 dynes.
The figures on the curve represent the time, 360° = 1 oscillation period, frequency 

400 c.p.s.
abscissa: alternating force in dynes. 
ordinate: change in length in fi.

For the measuring of stiffness the recording system plus the analogue 
of the muscle fibre are acted upon by a periodically alternating force. In 
a phase in which the imposed force decreases, the large stiffness Gc 
adjusts itself instantaneously to the varying tension while the damped 
elasticity (the Voigt-element) cannot follow, i. e. hardly shortens at all. Since 
the change in length in the crystalline element Gc is insignificant, the 
inertia of the total system will quickly reduce the tension in the chain 
to zero and cause it to become slack. As mentioned, this behaviour 
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will give rise to an essential decrease in stiffness with increasing vibra
tional amplitude.

In order to evaluate the order of magnitude of this amplitude de
pendence we have solved the equations of motion for the oscillating 
system in its “free” phase, i. e. the phase in which there is slack, and 
in the coupled phase, i. e. the phase during which the chain is able 
to follow the changes in load. The solutions are adjusted so that the 
resulting motion is periodic with the frequency of the external alter
nating force. The result, which varies with the amplitude and the fre
quency of the alternating force, is given as a vector diagram in which 
the abscissa gives the alternating force, and the ordinate the change 
in length. The closed curve obtained corresponds to the experimentally 
found Lissajous figures. The figures given on the periphery of the cal
culated curve (fig. 104) indicate the time, 360° denoting one oscillation 
period.

With fixed values of the constant tension and the amplitude of 
the alternating force, varying frequency gives a number of these Lissa
jous figures. Among them we select the one which is nearest to resonance, 
i. e. when the length axis of the egg-shaped curve coincides with the 
ordinate. When this procedure is used for different force amplitudes, 
we find that the resonance frequency decreases strongly with increasing 
force amplitude. As in the experiments the calculated Lissajous figures 
(fig. 104) arc not entirely symmetrical along their length axis.

In the calculations represented in tig. 104 we have used the following 
values for the parameters of the system:

Gc = 5-IO5 dynes X cm1
Gt = 2.5-IO3 dynes X cm-1 
tj = 4.45 -IO2 dynes x cm-1 X sec.

and m — 0.05 g,

where m is the equivalent mass of the total system. We have calculated 
partly the resonance frequency corresponding to very small amplitudes 
and partly the resonance frequency corresponding to a force amplitude 
of 17 per cent of the constant load, P, which is assumed to be 1000 dynes.

In the experiments we have found for the same load and the same 
force amplitude a reduction in the resonance frequency of 10 per cent. 
The calculations give a reduction amounting to 20 per cent. The ex
perimental and theoretical results are compiled in Table 15.

It appears from the table that the constants used in the present 
example are not completely suited for a description of the dynamic 
properties of the muscle fibre. However, the main object of the calcula
tions was to show that the model used really displays an amplitude depen
dence of a direction and magnitude similar to that found experimentally.

The different amplitude dependence found in the resting muscle 
fibre and in the letanically contracted fibre, and the difference between
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Table 15.
Amplitude dependence.

force 
ampl. in 
per cent 

of P

length ampl. 
in per cent 

of Lo
elastic 

stiffness
viscous 
stiffness

stiffness 
ratio

frequency
c. p. s.

exp. Z 0 ^0
X108

55
X103
85 1.54 169

17 0.5 46 81 1.76 153

calc. ¿ o : 0 500 58 0.116 500
17 1.1 312 32 0.100 400

amplitude dependence in rubber and in muscle must be ascribed to the 
difference in slack and creep properties in the different cases.

APPENDIX III
Shortening velocity as a function of load in the isolated 

fibre and in whole muscle.
Let us consider a “muscle” consisting of two fibres, fibre 1 and 

fibre 2, where the equilibrium length of fibre 2 is 20 per cent higher 
than that of fibre 1, and where the ends of the fibres are supposed to 
be coupled. We shall determine the relation between shortening velocity 
and load for this idealized muscle.

On account of the difference in equilibrium length a load P will 
be unevenly distributed between the fibres and the ratio in which it 
is divided will vary with the load. From the static length-tension 
diagram of the muscle fibre (fig. 11) one finds the ratio to vary between 
2.4 and 4 when P varies between 0.1 Po and 2 Po (Po referring to a single 
fibre). In the following calculations we assume a value of 3 for the ratio 
independent of the load.

The fibres are considered to be composed of a contractile com
ponent obeying the force-velocity relation and an exponential series 
elasticity. Thus, we have for the elasticities:

dP,
x (Px + P«> (1)

and
dP„ X1
«7 = 0^+^’ (2)

where Px and P2 denote the load on fibre 1 and 2, respectively, i. e.
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>

Pt + P2 = P, (3)

and where L is the length while x1 and P^ are constants to which in 
accordance with the experiments (cf. Part III) we ascribe the values:

P'st = 0.05 P„ (4)
and

x1 = 33cm—\ (5)

For loads below Po we determine the shortening velocity of the 
contractile components of the fibres from Hill’s equation, i. e. :

(P, +a)(Vx + b) = (Po a) - b (6)
and

(P2+a)(V2 + 1.2Ö) = (Po-f-a) • 1.2Z>. (7)

For loads exceeding Po we modify these relations to

(Px + a) (4VX + Z>) = (PQ + a)-b (8)

(P2 + a)(4V2 + 1.2&) = (P0 + a)-1.2ft. (9)

'fhis seems justified from Katz’s force-velocity curves (Katz 1939). 
From (6) and (7) one obtains:

and

Furthermore

and

p p
V = b- ------ 1 for P. < P„

1 Pt + a 1 o

p p
1.2b- 0---- * for

P^+a

Vi P,>P0

V2 for P2>P0.

(10)

(11)

(12)

(13)

The coupling of the fibres will force them to shorten externally 
with a velocity V lying between Vx and V2. Consequently, the series 
elasticity of fibre 1 is stretched with the velocity Vx—V, while that 
of fibre 2 shortens with the velocity V—V2. According to (1) and (2) 
these processes will bring about variations in the loads Px and P2, 
governed by:
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dpi - dPL dL
dt dL ' dt

and
dP2 _ dP2 dL
dt dL ’ dt "

x1(P1 + í’i)(Vt-V) (14)

^(P2 + í>il)(V2-V). (15)

We are considering isotonic conditions, i. e. the load P is constant. 
This implies according to (3) that:

(14), (15), and (16) give:

(Px + Pi) V1 + ï^(J’2 + i’i)V2

px+^l+

(Iß)

(17)

We now introduce the above mentioned assumption: 

i. e.
P. = 3P2, (18)

Px = 0.75 P and P2 = 0.25 P. (19)

Thus, Px < Po is equivalent to P < 1.33 Po, while P2 < Po is equi
valent to P < 4 Po.

Inserting the expressions (10)—(13) for Vx and V2 an(l the assump
tions (18) and (19) in (17), we obtain the following relation between 
shortening velocity and load for our “muscle”:

V = Z>

(0.75 P + 0.05 P.) - + (0.25 P + 0.05 P„) °p™ ?

0.75 P4- 0.05 Po + —(0.25 P + 0.05 Po)

for P<1.33P0

V = b
0.75 P + 0.05 Po -J- -1- (0.25 P + 0.05 Po)

1.2

for 1.33P0<P<4P0.

(20)

(21)
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Putting a = 0.30 Po and b = 0.92 L0/sec. we get from (20) and (21) 
the force-velocity relation shown in fig. 105, where the load on the 
“muscle” is measured in units of Pom, the load at which V — 0. Ac
cording to (21) Pom = 2.75 Po. Fig. 105 also contains the force-velocity

Fig. 105. Maximum shortening velocity as a function of the load for a single fibre 
and for a “muscle” consisting of two fibres with a difference in equilibrium length 

of 20 per cent.
Vfibre: sin8le flbre-

V : “muscle”.
abscissa: load on the fibre in units of Po and load on the “muscle” in units of POjv 
ordinate: shortening velocity in units of Lo per sec.

curve for fibre 1 given by (10). Comparison with the experimental 
curves for fibre and muscle shows that the theoretical difference between 
fibre and “muscle” is of the right order of magnitude (fig. 63).

If the “muscle” curve in fig. 105 is approximated by curves deter
mined by Hill’s equation:

(•P + aM) (T + ^Af) = (P<jM + dw) (22)

one finds values of ay between 0.145 Pom and 0.12 Pom- The corre
sponding values for bm are 0.445 L0/sec. and 0.36 L0/sec. The experimentally 
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determined constants for the semitendinosus muscle are: = 0.125 Pom 
and byj = 0.38 L0/sec.

As described in Part III (fig. 80) the fibres of a muscle have actually 
differences in equilibrium length of the order of magnitude assumed in 
the above calculations. Therefore, we may conclude that the difference 
between the force-velocity relations for the semitendinosus muscle and 
its fibres can be understood on the basis of the distribution of equili
brium lengths for the fibres in the muscle.
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Aa + ß’ Aß+a
a

activation energy.................................................... 235
constant in Hill’s equation (expressed in units
of Po)......................................................................... 177

a — short modification of keratin, fibrinogen, and 
inyosin....................................................................... 223

a fraction of links in the a-modification............... 239
«2» «3 - number of a-aggregates with 2, 3-------links

respectively.............................................................. 250
a/
al

fraction of links in the fixated a-state............... 257
fraction of links in the non-fixated a-state.... 257

b constant in Hill’s equation (expressed in units 
of Lo per sec.)........................................................ 177

ß- long modification of keratin, fibrinogen, and 
myosin ...................................................................... 223

ß 
ß‘2’ ßs

fraction of links in the ^-modification............. 239
number of ^-aggregates with 2, 3------- links
respectively.............................................................. 250

C concentration of fixating factor......................... 250
c constant in the distribution function of retar

dation times............................................................ 71
Ci experimental constant from creep experiments 55
C p experimental constant from isometric transients

(stress-relaxation).................................................... 63
Q and C2 proportionality factors in aggregate formation

and break-down...................................................... 250

D
AL
AP
Ap

defixation factor in the contraction theory... 257 
change in length .................................................... 56
change in load........................................................ 45
increase in tension in the transmutation chain 246

V damping, viscosity, friction................................. 17

FC fixation factor in the contraction theory........ 257



Definition 
on page 

G stiffness, elasticity  39, 49, 60
G , . elastic stiffness  17clast
G . viscous stiffness  18vise _______________
Gtot total stiffness = |/G2ast + G2sc ......................... 19
G (t) distribution function of relaxation times  69
y deformation  17
y() deformation amplitude  17

1 moment of inertia  22

J reciprocal elastic stiffness (compliance)  66
J (r) distribution function of retardation times.... 67
/ (t) normalized distribution function  72

C
K constant in the aggregate theory = —  251

K (log t) distribution function of relaxation times in loga
rithmic time scale = t-<7(t)  75

« constant in the length-tension relation of the
muscle fibre = relative stiffness  59, 292

L fibre length  38
Lo equilibrium length of the muscle fibre  35
L (log r) distribution function of retardation times in

logarithmic time scale = r-/(r)  72
J.(1 and Lß length of the a- and ^-modifications respectively 235
Z distance from the a-minimum to the peak of the

potential energy barrier  238
Z^ distance from the ^-minimum to the peak of the

potential energy barrier  238
2 Z distance from the a-minimum to the ^-minimum 239
Zj and Z2 decay constants in the theoretical course of

shortening  261

M number of aggregates  250
Ma and Mß number of a- and ^-aggregates respectively.... 250
m mass, equivalent mass  17
/tl and /t2 decay constants in the theoretical course of

relaxation  269

N number of links  240
N(1 and Nß number of links in the a- and /^-modifications

respectively  239 
n relative number of links in a chain  249
v0 resonance frequency (c. p. s.)  20
V collision frequency  234
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Definition 

on page
cyclic frequency...................................................... 17
resonance frequency (cyclic)............................... 18

load on the fibre.................................................... 38
reference load = the load at which the shorten
ing velocity is zero................................................ 38
mean load................................................................ 60
internal tension in the contractile elements.... 173 
stiffness-tension........................................................ 84
measure of the load on a transmutation chain

extra tension............................................................ 258
phase displacement................................................ 17

proportionality factor in the Tobolsky-Eyring 
sinh-equation............................................................ 229

force........................................................................... 17
force amplitude........................................................ 17
force acting on the fibre........................................ 80
inertial force............................................................ 80

G . 
stiffness ratio = —lsc- ............................................ 19

elast
“latent period’’ = time required for a trans
mutation chain to obtain maximal shortening 
velocity....................................................................... 262
relaxation and retardation time................... 66, 68 
boundaries in the spectrum of retardation times 71

potential energy barrier governing the a ß 
transmutations........................................................ 235

3 3

shortening velocity.................................................. 147
maximal shortening velocity in the trans
mutation theory...................................................... 264
relaxation velocity.................................................. 181 
maximal relaxation velocity in the trans
mutation theory...................................................... 269
velocity in transients ............................................ 55
transmutation frequencies per link................... 237
proportionality factor in the transmutation 
frequency per link.................................................. 239



Index of subjects
A-substance 220.
acceleration, see inertial forces, 
activation, degree of 188, 189, see storing, 
activation energy 234-238.
activation heat, see heat production.
activation velocity 188, see shortening 

velocity.
acto-myosin 207, 219, 256. 

adenosine-triphosphate 102. 
amplitude dependence 101. 
see keratin.
load 101, 281.
stiffness 101.
X-ray diffraction 9, 222.

adjustment.
amplitude dependence 103, 191.
creep as compared with relaxation 
193.
creep, rest, contraction 53-55, 124—127, 
230.
elastic aftereffect 40, 43, 64. 
hysteresis 40.
isotonic, isometric maxima 127-130. 
length-tension diagram, partial 46. 
length-tension diagram, semi-dynamic 47. 
quick load 49, 158, 174.
quick release 62, 138, 171.
quick unloading 53, 165.
relaxation, prolonged course, see stress
relaxation.
retardation time 66-67, 70-74, 107-110, 
235, 246.
rubber as compared with muscle 66, 74, 
77, 230.
sarcolemma, fibre, comparison 114. 
series elasticity 128, 170-173.
stiffness, contraction 54, 124-125, 190- 
191.
stiffness and slack 103-106, 190-191. 
stress-relaxation 63-65, 137-138. 
structural viscosity 40.
temperature dependence 55, 63, 125. 
thixotropy 52, 58.
yielding 58, 128.

aftereffect, elastic 40, 43, 65, see hysteresis, 
plasticity 

afterload and stop contraction.
afterload maxima 129, 132.
definition 127, 129-130.
muscle and libre, comparison 130. 
relation to isotonic, isometric 129. 
release 130, 153.
shortening velocity 150-152, 177-178. 
work 200, 204.

after-oscillation in transient 47.
damping 52, 54.
plasticity, thixotropy 52-53. 
stiffness 50.
twitch 160, 162.
vibrational stiffness 50, 52.

aggregates 224, 249-255, 276-279, see mi
nute structure.

alpha-beta modification 223, 233, 260. 
amplitude.

external alternating force 17, 27, 79. 
extra tension 77-78.
force, determination of 19, 37.
length, peak to peak 37, 60.
length, determination of 19, 26.
length, relative 19, 37.
sensitivity, 25-27, see isotonic myograph, 
velocity 35, 90, 104, see shortening 
velocity.

amplitude dependence.
see error.
see stiffness.

anisotropic substance 220.

Birefringence 103, 135, 220-222.

Collision, see thermal, 
colloid-osmotic pressure 194.
component, crystalline 220. 
connective tissue 10, 98, 134, 149, 171, 181, 
195, 204-205.

see series, shunt element, 
contraction.

see afterload.
enhancement, see stimulation.
see fixation.
intensity (P() 173-175.
isometric, isotonic, comparison, see iso
metric.
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contraction (continued).
isometric, recording 36.
see release.
stop, see afterload, 
temperature dependence, see temperature, 
tension, isometric, see Po.
theory, transmutation 256 IT. 
transition from rest 101, 106.
twitch, tetanus, comparison 142, 187-189. 
velocity, see activation velocity, 
velocity, see shortening velocity.
see work.

creep 45-56, 60, 70-71, 124-127. 
rest, contraction, see adjustment, 
temperature dependence, see tempera
ture.

cross-linkages, see texture, see transmuta
tion.

crystallization 124.
see minute structure.

curarine 35.

Damping, see viscosity, 
defixation 256, 268.
desactivation, see relaxation, 
diffraction pattern, hair 224.
diffraction pattern, muscle 224, 225. 
diffusion time 230.
duration, twitch 143-146.

Elastic stiffness, see stiffness.
elasticity, crystalline 229, 242.
elasticity, kinetic 228. 
elasticity modulus, see modulus, 
elasticity, torsional, see torsional, 
electron microscopy 110, 219-220, 225. 
energy, elastic 125, 199, see storing, 
encountering, thermal, see thermal collision, 
entanglement, points of, see texture, 
entropy 280-282.
equilibrium length, see length, 
equivalent mass, see mass 
equivalent model 205-207, see Voigt-model, 
error:

extra tension, vibrational amplitude 78, 
132.
fatigue 129.
fibre attachment 27-29.
injury, fibre 28, 33.
phase determination 29. 
plasticity 129.
stiffness determination 28-30.
tension and length 25-29.
weak spots, contractility 28, 33, 116.

Fatigue.
correction for 129.
relaxation velocity 184.

fatigue (continued).
stiffness 100.
tetanic contraction 129.
twitch 189.

fibre diagram 222.
fibrillar structure 9, 219. 
fibrils 9, 194, 219-224.
filament, protein 219-224.
filter, high-pass 38. 
fixation.

degree of 267.
heat 282.
molecular 256-257.
texture 205-207.

folding, intramolecular 223. 
force-amplitude, see amplitude, 
force-velocity relation, see shortening velo

city.
frequency dependence.

partial length-tension diagram 46, 79. 
retardation time spectrum 93, 109-110. 
semi-dynamic length-tension diagram 47. 
static, dynamic stiffness 84, 91, 126, 170. 
stiffness, additional mass 91, see adjust
ment.
stiffness rest, contraction 81, see stiffness, 
viscous stiffness 83, 91.

frequency, see resonance.

Heat.
activation 191, 282.
active, passive relaxation 195, 285. 
maintenance 285.
relaxation from high loads 195-196. 
shortening heat and a 178, 283-285. 
shortening heat and slack 282-284. 
whole muscle as compared with fibre 
178-181.

heat movements.
see kinetic theory.
points of entanglement, see texture. 

Hill’s equation, see shortening velocity, 
hysteresis.

comparison with rubber 43-44.
elastic aftereffect 44, see aftereffect, 
resting fibre 40, 64.
sarcolemma 114.
temperature dependence 44.
temperature hysteresis, shortening 121- 
123.
temperature hysteresis, shortening velo
city 175-177.
whole muscle, isolated fibre 136, 194.

I-substance 220-222.
inertial forces.

definition 17, 23-24.
dynamic length-tension diagram 45, 80. 
initial course of transient 56-57. 
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inertial forces (continued).
recording, twitch 143, see mass, equi
valent.
relative 25.
Ringer’s solution, influence 28-29. 

injury.
delta stale 136.
weak spots, sarcolemma, fibre 33, 116, 
118.

intensity of contraction, see contraction 
intensity.

internal tension (P/), see contraction, see 
series element.

isometric, comparison with isotonic 10. 
adjustment 129.
afterload, stop 129, 130. 
isometric maxima 127—130. 
isotonic maxima 127-130. 
series element 172-173.
stiffness 96-97.
time course, twitch 143-116.
work 196-205.

isometric contraction, recording of 36.
isometric contraction, theory 271-274.
isometric tension, temperature dependence 

123, 133.
isotonic as compared with isometric, see 
isometric.
isotropic substance 220, see 1-substance.

Keratin as compared with myosin 9, 233. 
kinetic theory 226-228, 231.

Latency 136-137, 158, 262, 267.
muscle and fibre 136, 137.

latency relaxation 165, 225.
length amplitude, see amplitude.
length, equilibrium.

contraction 121.
determination 35-36.
distribution of libres 179, 298. 
rest 25, 38-40, 231, 298-301.

length in the body 40.
length, natural 40, 136.
length, relative 35.
length, resting 39-40.
length, theoretical 241.
length-tension diagram.

afterload maxima 130.
amplitude dependence of stiffness 292- 
295.
contraction 121.
determination, rest, contraction 35, 36. 
dynamic 79.
hysteresis 40-44.
isometric maxima 121, 127—130 
isotonic maxima 121, 127-130. 
minute structure 227. 

length-tension diagram (continued), 
partial 46, 47, 57, 79.
rest 38-44.
rubber as compared with fibre 43, 44. 
sarcolemma as compared with fibre 119. 
semi-dynamic 42, 47, see prehistory, 
stiffness 96.
stop maxima 130.
theoretical, contraction 257-259, 276-277. 
theoretical, rest 239-243, 247-255.

Lissajous figure 15, 37, 296.
different frequencies 15.
dynamic length-tension diagram 79. 
ellipse 18, 21, 296.
viscous, elastic stiffness 37, 38.

locking, elastic.
influence on work, see work 196-205. 
internal tension, heat production 195.
minute structure 131, 132, 135, 205-207, 
227.
muscle, relation to fibre 136, 137. 
relaxation velocity 184.
release length-tension diagram 130-132, 
see shunt element.
textural explanation 131, 132, 154, 155. 
time factor 131, 132, 141, 155, 156.

long range forces 226.

Mass, equivalent.
additional mass 38.
course of shortening 143.
definition, determination 23.
inertial forces, correction 45—46, see iner
tial forces.
isometric transient device 30.

Maxwell-model 66-69, see Voigt-model and 
retardation.

minute structure 219 ff.
aggregates 124, 224, 249-255, 276-279. 
crystallization 124.
elements 41, 231 IT.
elements, adjustment of 41, 42. 
locking, elastic 154, 205, see locking, 
stiffness 103-106.
temperature equilibrium 122.
X-ray 9, 222-225.
yielding 228, see yielding.

model, equivalent, see Voigt-model, 
modulus.

dynamic 84.
static 61.

molecular weight 6, 226.
motion, equation of 17, 66, 68, 260, 268, 293. 
muscle, whole, comparison with fibre 10.

active, passive relaxation 136, 137, 191- 
196.
birefringence 135.
distribution of fibre lengths 179.
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muscle, whole, comparison with fibre 

(continued).
elastic energy 125.
Hill’s equation 177-181, 200, 201, 202. 
inhomogeneous structure 150, 204. 
latency period 136.
physiological cross section 134, 135. 
recording system 25.
series element 171, 172.
shortening, tension 132-137. 
shortening velocity 150, 177-181.
stiffness, connective tissue 98. 
thermo-elasticity 43.
work 202, 204.

myograph.
frequency response 26.
isotonic 11-14, 25-29.
release 31-33.
sensitivity 25-27.

myosin, see acto-myosin.

Natural length, see length, 
nucleotide 221.

polypeptide chains 223.
potential energy barrier 229, 232-238. 
prehistory, influence on.

afterload, release 131, 132. 
internal resistance 131, 132, 141. 
isotonic contraction 127, 132.
preceding contraction, enhancement 143. 
shortening velocity 150-153.
stationary tension 132.
storing, quick load 161, 162.

pressure, internal, see osmotic equilibrium, 
pressure, radial, see sarcolcmma. 
propagation, mechanical.

activation 34.
fibre in loop 28.
isometric transient 58. 
maximum stiffness 165.
total activation 34.

protein.
chains 219-225.
fibres, periodicity 220, 223. 
structural 222-225.

Orientation.
degree (X-ray) 9, 220, 222-224, 233. 
entanglement 103-106, see texture, 
level, time factor 103-106, 222, 230. 
slack 103-106, 195, see slack.

osmotic equilibrium.
see colloid-osmotic.
hydration 95, 234.
relaxation, spontaneous 194. 
sarcolemma 114.

P»
definition 39.
determination 36.
fibre and muscle 25, 132-137.
series elasticity, geometrical fibre arrange
ment 135.
specific force 132-137.
temperature dependence 123, 133. 

phase displacement.
correlation to amplitude dependence, 
stiffness 17, 101, 108.
definition, determination 15, 18, 20.

as a measure of viscous stiffness 
elastic stiffness 19, 27.

visual determination 29.
photoelectrical, see recording 20. 
plasticity.

hysteresis, elastic aftereffect 40-44. 
locking, elastic 174.
non-linearity 47.
sarcolemma 114.
series element 174.
thixotropy 52, 58, 65. 
transient, initial course 64-65. 
yielding 228. 

Quick load.
see adjustment.
see transient.

Recording.
optical 13, 14.
photoelectrical 20.

relaxation.
active-passive 191-196.
defixation 256.
duration of contraction 183. 
enhancement of contraction 143, 144. 
equilibrium with contraction 187. 
fatigue 184.
heat production 195, 196.
load 173.
locking 184.
relaxation velocity, shortening velocity 
185.
re-orientation forces 194.
series viscosity and hump 173. 
shortening 182—188.
temperature dependence 184-187. 
theory 256, 268—270.
velocity 25, 142, 181-187, 260, 268-270, 
278-279.
velocity constant 183.

relaxation, mechanical, see adjustment, 
release 36, 125, 131.

comparison with isotonic contraction 203, 
204.
myograph 31, 32, 36.
quick release 138.
quick unloading 53, 161.
theory 274-275.
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release (continued).

velocity measurement 32, 35. 
velocity, shortening velocity 153. 
whole muscle, fibre 202.
work 32, 33, 197-199, 202-201. 

resonance.
definition 18.
determination 36-37. 
different equivalent mass 38. 
elastic stiffness 20.

i unique standard, stiffness 80.
retardation.

distribution function, isometric transient 
69, 75, 76.
distribution function, isotonic transient 
67, 71-74, 226, 235, 246.
relation to relaxation times in Maxwell
model 69, 75, 76.
spectrum of retardation times, rest, con
traction 72, 73, 105, 108, 126. 
vibrational stiffness 93, 107-110. 
Voigt-model 66-67, 69-77, 246.

rubber, comparison with fibre, 
degree of vulcanization 231. 
hysteresis 43-44.
length-tension, static 42. 
length-tension, temperature dependence 
42.
Maxwell-model, rubber 66, 76-77. 

rubber-like elasticity 226-228.

Sarcolemma.
breaking force 116, 117. 
breaking length 116, 117. 
comparison with intact fibre 114, 119. 
diameter 113, 119.
length-tension diagram 110, 119. 
plasticity, hysteresis 114.
radial pressure 116, 117, 194. 
retraction 111, 113.
stiffness, static, dynamic 114, 115. 
viscosity 115.

series element, shunt element, 
connective tissue, whole muscle 10, 181, 
204.
determination of Hill’s constant a 177- 
178.
elastic component, isotonic transient 165. 
elastic locking 205.
equivalent model 205-207.
internal tension (P¡) 155, 156, 173-175. 
isotonic contraction 120, 128. 
length-tension diagram 166-169.
Po 135.
relaxation velocity 184. 
series element and Po 135. 
twitch 172.
viscosity 170-172.

series element (continued)
Voigt-model 66-67.
work 204. 
yielding in contraction 174. 

shortening.
enhancement by preceding contraction 
143, 144.
fibre, whole muscle 132-137. 
frequency of stimulation 139-142. 
isotonic maxima 127-130.
temperature 121-122.
twitch 142-144.
twitch, tetanus 187-189.

shortening velocity.
afterload, release 151-154. 
course of shortening velocity 143, 144. 
definition 35, 147.
determination 25.
equilibrium, shortening and relaxation 
187.
Hill’s equation 177-181, 200. 
length 154.
load 148-150, 264-266, 278-279. 
locking, elastic 154, 200.
quick load 158-162, 165. 
relative 35.
release velocity 33. 
semitendinosus-sartorius 181.
series element 154, 166, 170-173. 
temperature dependence 175-177, 185. 
theory 232, 259-267, 277-279.
twitch, tetanic contraction 147, 148, 187- 
189.
whole muscle as compared with fibre 25, 
147, 150, 178-181, 298-301.

shunt element, see series element, 
slack.

alignment by contraction 105-107, 190- 
191.
amplitude dependence in contraction 106, 
110.
initial stiffness 106, 190, 205-207. 
latency period 136.
number of loaded chains 103-107, 136, 
248.
see texture.

spacing 223.
stiffness, amplitude dependence, 

acto-myosin threads 101, 102. 
elastic stiffness, rest 84-93, 228. 
frequency dependence 93. 
isometric contraction 77-78. 
length-tension diagram, non-linearity 292 
-294.
magnitude 86. 
rubber 88.
slack 104, 110.
temperature dependence 93. 
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stiffness, amplitude dependence (continued), 

theory 295-298.
total stiffness, rest, contraction 90, 100, 
109.
velocity amplitude 90.
viscous stiffness 87.
viscous stiffness, rest, contraction 90, 97. 
yielding 132.

stiffness, dynamic.
absolute values 28.
adjustment 50.
after-oscillation, transient 50.
alignment 191.
see amplitude dependence.
connective tissue 98.
contraction 95-101, 105-107, 131-132. 
dependence on load, frequency 80-83, 91, 
109.
determination 36-38, 80.
during relaxation 165.
elastic, definition 17, 18, 20.
elastic energy, contraction 125, 199.
equivalent system 47-48, 65-77.
error 29.
hydration 95.
initial 131, 163-165, 190-191.
internal tension 173-175.
isometric contraction 96.
isometric transient, rest 56-59.
isotonic contraction 95-97.
isotonic transient, amplitude and load 50.
isotonic transient, rest 45-55.
length dependence 96.
load dependence 82.
maximum 106, 131-132, 163-167, 190-
191, 205-207, 228.
measurement 36-38, 80.
ratio, dynamic:static 84.
recording system 25-27.
relative 52, 60.
retardation time spectrum, rest, con
traction 72-73, 93, 105-110, 235.
rubber 230.
series element, contraction 166-171. 
static, dynamic, contraction 105, 125, 
126.
temperature dependence, contraction 99. 
temperature dependence, rest 93. 
texture and minute structure 103-106, 
205-207.
theory 259.
total 19, 90-93.
transient, contraction 137-138.
transient, rest 50, 59, 61.
vibrational, definition 17, 18, 20, 77-78. 
vibrational and transient 49, 50, 60, 61, 
104.
yielding 166.

stiffness, static.
load 39.
relation to dynamic stiffness 60, 61, 125. 
relative 61.
retardation time spectrum 105, 126. 
sarcolemma, fibre 112, 115.
series element 170. 
temperature 42, 52, 62, 99. 
stiffness-tension 60, 84. 

stiffness, viscous.
contraction, 99 106.
damping resistance in transient 46-49. 
definition 18.
determination 80.
load 83.
relation to elastic stiffness 19, 27, 110.
Ringer’s solution 29.
series element, relaxation 184. 
structural viscosity 40.
temperature dependence 93, 99. 

stimulation.
enhancement 143, 144.
frequency 139.
interruption, influence on work 203. 
number of stimuli 139-142.
shortening velocity 147.
storing of stimuli 140, 141, 188. 
stress-relaxation, see adjustment, 
summation 139, 140.
technique 34-36.
twitch duration, temperature 142, 144. 

stop contraction, see afterload and stop 
contraction.

storing, elastic energy.
comparison whole muscle-fibre 125. 
influence on work 198-200, 202. 
isotonic transient 49.
release 199, 202.

storing, mechanical reaction.
initial transient loading 142, 161. 
successive stimuli 140, 141, 187-189. 

surface tension 29, 195.

Temperature dependence.
adjustment 52.
creep, contraction, rest 55, 125. 
determination 34.
hysteresis, rubber, muscle 43, 44. 
isometric tension (Po) 123, 133. 
length-tension diagram, static 42-44, 228, 
280-281.
membrane potential 177. 
point of inversion, thermoelasticity 43. 
relaxation velocity 143, 185.
shortening 121-123.
shortening, twitch 123, 187-189. 
shortening velocity 175-177.
stiffness, amplitude dependence 93-94. 
stiffness, contraction 99.
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temperature dependence (continued), 
stiffness, rest 93.
stiffness, total, rest and contraction 94, 
100.
temperature equilibrium in structure 122. 
temperature hysteresis 122, 176. 
tension, rest, static, dynamic 61-62. 
tetanic shortening 121-123.
transient, isometric 63-64.
transient, isotonic 52.
twitch 143.

tension, internal.
active, passive relaxation 195. 
see colloid osmotic pressure, 
contraction 173-175.
influence on shortening 131, 132.
P¡ 173-175.
relation to surface tension 29.
time factor in locking 131, 154-156, 195, 
205.

tension, isometric.
tetanic, see Po.
twitch 145, 146.

texture 11, 41.
aggregates, formation 124.
cross-linkages, locking 41, 205-207, 249- 
255, 276-279.
dynamic stiffness, static stiffness 103-106. 
early maximum, stiffness 106.
heat movement, structural viscosity 40, 
104.
hydration 95.
locking 131-132, 157.
minute structural elements 103-106.
number of loaded chains 103-106, 248. 
pattern, contraction 106, 131-132, 172. 
points of entanglement 41, 42, 103-106, 
131-132, 205 207, 231, 217 if. 
rearrangement 41.
slack, contraction 205-207, see slack, 
spectrum of retardation times, rest, con
traction 73, 105-108.
work 203.
yielding 106, 132, 166, 206.

thermal collision 234, 282.
see kinetic theory.

thermal movement, see thermo-kinetic 
theory, entanglement, points of.

thermo-elasticity 227-228. 
thermo-kinetic theory 227-228.

see heat movement.
thixotropy.

see plasticity.
amplitude in transient 52, 53, 58. 
plasticity 65, 228.
repeated transients 52, 53, 65. 
structural viscosity 40, 103.
sudden load 47. 

torsional elasticity 41, 205, 228. 
total stiffness, see stiffness.
transient.

see after-oscillation.
comparison, creep, relaxation 64. 
contraction 54, 57, 124-127, 137-138, 
158-166.
definition 11, 30. 
isometric 56-65.
isotonic 45-56. 
magnitude of load 49.
retardation time, see Voigt-model 66, 
70-75, 107-110.
stiffness 50, 59, 61.
technique, isotonic, isometric 30. 
temperature, isotonic 52.
theory 244-247, 255. 
time of extension 56, 74. 
transient stretch 158-160. 
velocity, rest 51.

transition 41. 
transmutation 231.

chain 231 ff.
chains, contraction 256-274.
chains, cross-linked 247-255, 276-280. 
transmutation frequency (W) 237-239.

transparency 224.
twitch, isotonic 142-146.

as compared with tetanus 187-191.

Velocity amplitude, see amplitude, 
velocity constant, see relaxation, 
velocity, initial, in transient, see trans

ient.
velocity, relative 35.
velocity of shortening, see shortening ve

locity.
viscosity (damping).

definition 17-21.
protoplasma 83. 
sarcolemma 115. 
series element 170-173.

viscous stiffness, see stiffness.
Voigt-model, Maxwell-model 66-69.

creep, stress-relaxation during con
traction 126.
frequency dependence 108-110. 
Maxwell-model 67-69.
retardation time spectrum 72-73, 107- 
110, 235.
three-element model 229. 
transient 70-77, 246.
vibration experiments 107-110.

Wool fibres 233.
work.

afterload 200, 204.
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work (continued), 

determination of 31-33. 
elastic energy 125, 198, 199. 
eccentric, concentric 201. 
interruption of stimulation 203-204. 
isometric release 30-33, 107-200. 
isotonic, isometric release 197. 
optimal conditions 200, 202. 
rate of work production 210-205. 

work (continued), 
velocity of release 198-199. 
whole muscle, libre 202-205.

X-ray diffraction 9, 10, 103, 222-225, 244, 
255.

Yielding 58, 106, 128, 132, 166, 191, 205, 
228.

by vibration 77, 78.

Indleveret til selskabet den 9. maj 1951, 
Færdig fra trykkeriet den 15. december 1951.


